These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 23830116)

  • 1. Reaction of silver nanoparticles in the disinfection process.
    Yuan Z; Chen Y; Li T; Yu CP
    Chemosphere; 2013 Oct; 93(4):619-25. PubMed ID: 23830116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.
    Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G
    J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.
    Akaighe N; Depner SW; Banerjee S; Sohn M
    Chemosphere; 2013 Jul; 92(4):406-12. PubMed ID: 23422173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disinfection action of electrostatic versus steric-stabilized silver nanoparticles on E. coli under different water chemistries.
    Fauss EK; MacCuspie RI; Oyanedel-Craver V; Smith JA; Swami NS
    Colloids Surf B Biointerfaces; 2014 Jan; 113():77-84. PubMed ID: 24060931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles.
    Oćwieja M; Barbasz A; Walas S; Roman M; Paluszkiewicz C
    Colloids Surf B Biointerfaces; 2017 Dec; 160():429-437. PubMed ID: 28987952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers.
    Zhang H; Smith JA; Oyanedel-Craver V
    Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments.
    Koivunen J; Heinonen-Tanski H
    Water Res; 2005 Apr; 39(8):1519-26. PubMed ID: 15878023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics.
    Zhang W; Yao Y; Sullivan N; Chen Y
    Environ Sci Technol; 2011 May; 45(10):4422-8. PubMed ID: 21513312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study.
    Ho CM; Wong CK; Yau SK; Lok CN; Che CM
    Chem Asian J; 2011 Sep; 6(9):2506-11. PubMed ID: 21608134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments.
    Wang H; Dong YN; Zhu M; Li X; Keller AA; Wang T; Li F
    Water Res; 2015 Sep; 80():130-8. PubMed ID: 26001279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green synthesis of hyaluronan fibers with silver nanoparticles.
    Abdel-Mohsen AM; Hrdina R; Burgert L; Krylová G; Abdel-Rahman RM; Krejčová A; Steinhart M; Beneš L
    Carbohydr Polym; 2012 Jun; 89(2):411-22. PubMed ID: 24750738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage.
    Dasari TP; Hwang HM
    Sci Total Environ; 2010 Nov; 408(23):5817-23. PubMed ID: 20850168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.
    El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SMX degradation by ozonation and UV radiation: a kinetic study.
    Liu X; Garoma T; Chen Z; Wang L; Wu Y
    Chemosphere; 2012 Jun; 87(10):1134-40. PubMed ID: 22386457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study.
    Ho CM; Yau SK; Lok CN; So MH; Che CM
    Chem Asian J; 2010 Feb; 5(2):285-93. PubMed ID: 20063340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on aggregation behavior of Cytochrome C-conjugated silver nanoparticles using asymmetrical flow field-flow fractionation.
    Kim ST; Lee YJ; Hwang YS; Lee S
    Talanta; 2015 Jan; 132():939-44. PubMed ID: 25476400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different water conditions on dissolution of nanosilver.
    Chen SF; Zhang H; Lin QY
    Water Sci Technol; 2013; 68(8):1745-50. PubMed ID: 24185055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles.
    Furman O; Usenko S; Lau BL
    Environ Sci Technol; 2013 Feb; 47(3):1349-56. PubMed ID: 23298221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions.
    Li Y; Zhang W; Niu J; Chen Y
    Environ Sci Technol; 2013 Sep; 47(18):10293-301. PubMed ID: 23952964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.