These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23830682)

  • 1. The enzymatic conversion of phosphonates to phosphate by bacteria.
    Kamat SS; Raushel FM
    Curr Opin Chem Biol; 2013 Aug; 17(4):589-96. PubMed ID: 23830682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation.
    Sosa OA; Repeta DJ; DeLong EF; Ashkezari MD; Karl DM
    Environ Microbiol; 2019 Jul; 21(7):2402-2414. PubMed ID: 30972938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphonates and their degradation by microorganisms.
    Kononova SV; Nesmeyanova MA
    Biochemistry (Mosc); 2002 Feb; 67(2):184-95. PubMed ID: 11952414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of microbial phosphonate degradative pathways.
    Huang J; Su Z; Xu Y
    J Mol Evol; 2005 Nov; 61(5):682-90. PubMed ID: 16245012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-Phosphorus Lyase-the State of the Art.
    Stosiek N; Talma M; Klimek-Ochab M
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1525-1552. PubMed ID: 31792787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediates in the transformation of phosphonates to phosphate by bacteria.
    Kamat SS; Williams HJ; Raushel FM
    Nature; 2011 Nov; 480(7378):570-3. PubMed ID: 22089136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.
    Vera M; Pagliai F; Guiliani N; Jerez CA
    Appl Environ Microbiol; 2008 Mar; 74(6):1829-35. PubMed ID: 18203861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Microbial Degradation of Natural and Anthropogenic Phosphonates.
    Ruffolo F; Dinhof T; Murray L; Zangelmi E; Chin JP; Pallitsch K; Peracchi A
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.
    Peck SC; van der Donk WA
    Curr Opin Chem Biol; 2013 Aug; 17(4):580-8. PubMed ID: 23870698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling.
    Quinn JP; Kulakova AN; Cooley NA; McGrath JW
    Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria.
    Martín JF; Liras P
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498785
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxygen isotope signature of UV degradation of glyphosate and phosphonoacetate: tracing sources and cycling of phosphonates.
    Sandy EH; Blake RE; Chang SJ; Jun Y; Yu C
    J Hazard Mater; 2013 Sep; 260():947-54. PubMed ID: 23892161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescent substrate for carbon-phosphorus lyase: towards the pathway for organophosphonate metabolism in bacteria.
    He SM; Luo Y; Hove-Jensen B; Zechel DL
    Bioorg Med Chem Lett; 2009 Oct; 19(20):5954-7. PubMed ID: 19733071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Oxidative Pathway for Microbial Utilization of Methylphosphonic Acid as a Phosphate Source.
    Gama SR; Vogt M; Kalina T; Hupp K; Hammerschmidt F; Pallitsch K; Zechel DL
    ACS Chem Biol; 2019 Apr; 14(4):735-741. PubMed ID: 30810303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular genetics of carbon-phosphorus bond cleavage in bacteria.
    Wanner BL
    Biodegradation; 1994 Dec; 5(3-4):175-84. PubMed ID: 7765831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-phosphorus bond cleavage activity in cell-free extracts of Enterobacter aerogenes ATCC 15038 and Pseudomonas sp. 4ASW.
    McMullan G; Watkins R; Harper DB; Quinn JP
    Biochem Int; 1991 Sep; 25(2):271-9. PubMed ID: 1789794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primer design to assess bacterial degradation of glyphosate and other phosphonates.
    Morales ME; Allegrini M; Basualdo J; Villamil MB; Zabaloy MC
    J Microbiol Methods; 2020 Feb; 169():105814. PubMed ID: 31866379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.