These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23831004)

  • 1. Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation.
    Innocenzi V; De Michelis I; Ferella F; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2390-6. PubMed ID: 23831004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation.
    Innocenzi V; De Michelis I; Ferella F; Beolchini F; Kopacek B; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2364-71. PubMed ID: 23910246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.
    De Michelis I; Ferella F; Varelli EF; Vegliò F
    Waste Manag; 2011 Dec; 31(12):2559-68. PubMed ID: 21840197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental burdens in the management of end-of-life cathode ray tubes.
    Rocchetti L; Beolchini F
    Waste Manag; 2014 Feb; 34(2):468-74. PubMed ID: 24238800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant.
    Rocchetti L; Vegliò F; Kopacek B; Beolchini F
    Environ Sci Technol; 2013 Feb; 47(3):1581-8. PubMed ID: 23323842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to hazardous substances in Cathode Ray Tube (CRT) recycling sites in France.
    Lecler MT; Zimmermann F; Silvente E; Clerc F; Chollot A; Grosjean J
    Waste Manag; 2015 May; 39():226-35. PubMed ID: 25776743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder with organic and inorganic ligands.
    Alvarado-Hernández L; Lapidus GT; González F
    Waste Manag; 2019 Jul; 95():53-58. PubMed ID: 31351639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treating high-mercury-containing lamps using full-scale thermal desorption technology.
    Chang TC; You SJ; Yu BS; Chen CM; Chiu YC
    J Hazard Mater; 2009 Mar; 162(2-3):967-72. PubMed ID: 18603361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathode ray tube (CRT) recycling: current capabilities in China and research progress.
    Xu Q; Li G; He W; Huang J; Shi X
    Waste Manag; 2012 Aug; 32(8):1566-74. PubMed ID: 22542858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware.
    Schumacher KA; Schumacher T; Agbemabiese L
    Waste Manag; 2014 Nov; 34(11):2321-6. PubMed ID: 25130982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction-melting combined with a Na₂CO₃ flux recycling process for lead recovery from cathode ray tube funnel glass.
    Okada T; Yonezawa S
    Waste Manag; 2014 Aug; 34(8):1470-9. PubMed ID: 24816522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead recovery from waste CRT funnel glass by mechanochemical reaction with reductive Al powder.
    Yuan W; Wu Z; Song Q; Huang Q; Zhang C; Crittenden JC
    Waste Manag; 2023 Dec; 172():43-50. PubMed ID: 37708811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yttrium recovery from primary and secondary sources: a review of main hydrometallurgical processes.
    Innocenzi V; De Michelis I; Kopacek B; Vegliò F
    Waste Manag; 2014 Jul; 34(7):1237-50. PubMed ID: 24613592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.
    Innocenzi V; Ippolito NM; De Michelis I; Medici F; Vegliò F
    J Environ Manage; 2016 Dec; 184(Pt 3):552-559. PubMed ID: 27789090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste recycling of cathode ray tube glass through industrial production of transparent ceramic frits.
    Karaahmet O; Cicek B
    J Air Waste Manag Assoc; 2019 Oct; 69(10):1258-1266. PubMed ID: 31403377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps.
    Rabah MA
    Waste Manag; 2008; 28(2):318-25. PubMed ID: 17566725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of lead recovery efficiency from waste CRT funnel glass by chlorinating volatilization process.
    Erzat A; Zhang FS
    Environ Technol; 2014; 35(21-24):2774-80. PubMed ID: 25176480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent development of recycling lead from scrap CRTs: A technological review.
    Yu-Gong ; Tian XM; Wu YF; Zhe-Tan ; Lei-Lv
    Waste Manag; 2016 Nov; 57():176-186. PubMed ID: 26365873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.
    Hu B; Hui W
    Waste Manag; 2017 Sep; 67():253-258. PubMed ID: 28587804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The characterization of waste cathode-ray tube glass.
    Méar F; Yot P; Cambon M; Ribes M
    Waste Manag; 2006; 26(12):1468-76. PubMed ID: 16427267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.