These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 23831087)

  • 1. Intrinsic and extrinsic control of oligodendrocyte development.
    Zuchero JB; Barres BA
    Curr Opin Neurobiol; 2013 Dec; 23(6):914-20. PubMed ID: 23831087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purinergic signaling in oligodendrocyte development and function.
    Welsh TG; Kucenas S
    J Neurochem; 2018 Apr; 145(1):6-18. PubMed ID: 29377124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of glial restricted human neural stem cells for oligodendrocyte differentiation in vitro and in vivo.
    Biswas S; Chung SH; Jiang P; Dehghan S; Deng W
    Sci Rep; 2019 Jun; 9(1):9013. PubMed ID: 31227736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation of oligodendrocyte differentiation: From development to demyelinating disorders.
    Samudyata ; Castelo-Branco G; Liu J
    Glia; 2020 Aug; 68(8):1619-1630. PubMed ID: 32154951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sox10 directs neural stem cells toward the oligodendrocyte lineage by decreasing Suppressor of Fused expression.
    Pozniak CD; Langseth AJ; Dijkgraaf GJ; Choe Y; Werb Z; Pleasure SJ
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21795-800. PubMed ID: 21098272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium Signaling in the Oligodendrocyte Lineage: Regulators and Consequences.
    Paez PM; Lyons DA
    Annu Rev Neurosci; 2020 Jul; 43():163-186. PubMed ID: 32075518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrinsic Factors Driving Oligodendrocyte Lineage Cell Progression in CNS Development and Injury.
    Baydyuk M; Morrison VE; Gross PS; Huang JK
    Neurochem Res; 2020 Mar; 45(3):630-642. PubMed ID: 31997102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain.
    Boulanger JJ; Messier C
    Neuroscience; 2014 Jun; 269():343-66. PubMed ID: 24721734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology of Oligodendroglia.
    Butt AM; Papanikolaou M; Rivera A
    Adv Exp Med Biol; 2019; 1175():117-128. PubMed ID: 31583586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BRCA1/BRCA2-containing complex subunit 3 controls oligodendrocyte differentiation by dynamically regulating lysine 63-linked ubiquitination.
    Wang CY; Deneen B; Tzeng SF
    Glia; 2019 Sep; 67(9):1775-1792. PubMed ID: 31184779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis.
    Dulamea AO
    Adv Exp Med Biol; 2017; 958():91-127. PubMed ID: 28093710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of oligodendrocytes and establishment of an all-human myelinating platform from human pluripotent stem cells.
    García-León JA; García-Díaz B; Eggermont K; Cáceres-Palomo L; Neyrinck K; Madeiro da Costa R; Dávila JC; Baron-Van Evercooren A; Gutiérrez A; Verfaillie CM
    Nat Protoc; 2020 Nov; 15(11):3716-3744. PubMed ID: 33097924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System.
    Sanz-Rodriguez M; Gruart A; Escudero-Ramirez J; de Castro F; Delgado-García JM; Wandosell F; Cubelos B
    J Neurosci; 2018 May; 38(22):5096-5110. PubMed ID: 29720552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related differences in oligodendrogenesis across the dorsal-ventral axis of the mouse hippocampus.
    Yamada J; Jinno S
    Hippocampus; 2014 Aug; 24(8):1017-29. PubMed ID: 24753086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligodendrogenesis from neural stem cells: perspectives for remyelinating strategies.
    Grade S; Bernardino L; Malva JO
    Int J Dev Neurosci; 2013 Nov; 31(7):692-700. PubMed ID: 23340483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination.
    Li C; Xiao L; Liu X; Yang W; Shen W; Hu C; Yang G; He C
    Glia; 2013 May; 61(5):732-49. PubMed ID: 23440860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.
    Lopez Juarez A; He D; Richard Lu Q
    Brain Res; 2016 May; 1638(Pt B):209-220. PubMed ID: 26546966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The committed oligodendrocyte precursor cell, a newly-defined intermediate progenitor cell type in oligodendroglial lineage.
    Fang M; Chen L; Tang T; Qiu M; Xu X
    Glia; 2023 Nov; 71(11):2499-2510. PubMed ID: 37278537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodendrocyte Progenitor Cells Become Regionally Diverse and Heterogeneous with Age.
    Spitzer SO; Sitnikov S; Kamen Y; Evans KA; Kronenberg-Versteeg D; Dietmann S; de Faria O; Agathou S; Káradóttir RT
    Neuron; 2019 Feb; 101(3):459-471.e5. PubMed ID: 30654924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of oligodendrocytes in mammalian forebrains: a revised perspective.
    Naruse M; Ishizaki Y; Ikenaka K; Tanaka A; Hitoshi S
    J Physiol Sci; 2017 Jan; 67(1):63-70. PubMed ID: 27573166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.