These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23831644)

  • 1. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo.
    Zhao X; Xu F; Tang L; Du W; Feng X; Liu BF
    Biosens Bioelectron; 2013 Dec; 50():28-34. PubMed ID: 23831644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans.
    Chokshi TV; Bazopoulou D; Chronis N
    Lab Chip; 2010 Oct; 10(20):2758-63. PubMed ID: 20820480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device.
    Hu L; Ye J; Tan H; Ge A; Tang L; Feng X; Du W; Liu BF
    Anal Chim Acta; 2015 Aug; 887():155-162. PubMed ID: 26320797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of intercellular calcium signaling using microfluidic adjustable laminar flow for localized chemical stimulation.
    Sun J; Zheng Y; Feng X; Du W; Liu BF
    Anal Chim Acta; 2012 Apr; 721():104-9. PubMed ID: 22405307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of intercellular communication by flexible hydrodynamic gating on a microfluidic chip.
    Chen P; Chen P; Feng X; Du W; Liu BF
    Anal Bioanal Chem; 2013 Jan; 405(1):307-14. PubMed ID: 23052886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term C. elegans immobilization enables high resolution developmental studies in vivo.
    Berger S; Lattmann E; Aegerter-Wilmsen T; Hengartner M; Hajnal A; deMello A; Casadevall i Solvas X
    Lab Chip; 2018 May; 18(9):1359-1368. PubMed ID: 29652050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the neuronal effects of ethanol on C. elegans by in vivo fluorescence imaging on a microfluidic chip.
    Wang Y; Wang J; Du W; Feng XJ; Liu BF
    Anal Bioanal Chem; 2011 Apr; 399(10):3475-81. PubMed ID: 20842350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal calcium waves coordinate a behavioral motor program in C. elegans.
    Teramoto T; Iwasaki K
    Cell Calcium; 2006 Sep; 40(3):319-27. PubMed ID: 16780946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress response of Caenorhabditis elegans induced by space crowding in a micro-column array chip.
    Wang X; Tang L; Xia Y; Hu L; Feng X; Du W; Liu BF
    Integr Biol (Camb); 2013 Apr; 5(4):728-37. PubMed ID: 23436042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip.
    Sofela S; Sahloul S; Bhattacharjee S; Bose A; Usman U; Song YA
    Integr Biol (Camb); 2020 Jun; 12(6):150-160. PubMed ID: 32510148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel microfluidic capture and monitoring method for assessing physiological damage of C. elegans under microgravity.
    Wang J; Meng J; Ding G; Kang Y; Zhao W
    Electrophoresis; 2019 Mar; 40(6):922-929. PubMed ID: 30597589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic device for efficient chemical testing using Caenorhabditis elegans.
    Song P; Zhang W; Sobolevski A; Bernard K; Hekimi S; Liu X
    Biomed Microdevices; 2015 Apr; 17(2):38. PubMed ID: 25744157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C.L.I.P.--continuous live imaging platform for direct observation of C. elegans physiological processes.
    Krajniak J; Hao Y; Mak HY; Lu H
    Lab Chip; 2013 Aug; 13(15):2963-71. PubMed ID: 23708469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time monitoring of immune responses under pathogen invasion and drug interference by integrated microfluidic device coupled with worm-based biosensor.
    Hu L; Ge A; Wang X; Wang S; Yue X; Wang J; Feng X; Du W; Liu BF
    Biosens Bioelectron; 2018 Jul; 110():233-238. PubMed ID: 29625331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells.
    Henriksen Z; Hiken JF; Steinberg TH; Jørgensen NR
    Cell Calcium; 2006 May; 39(5):435-44. PubMed ID: 16545868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans.
    Chung K; Crane MM; Lu H
    Nat Methods; 2008 Jul; 5(7):637-43. PubMed ID: 18568029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans.
    Chronis N; Zimmer M; Bargmann CI
    Nat Methods; 2007 Sep; 4(9):727-31. PubMed ID: 17704783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducing microscopic thermal lesions for the dissection of functional cell networks on a chip.
    Rinklin P; Afanasenkau D; Wiegand S; Offenhäusser A; Wolfrum B
    Lab Chip; 2015 Jan; 15(1):237-43. PubMed ID: 25358015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of ultra-thin chips for immobilization of Caenorhabditis elegans in microfluidic channels during irradiation and selection of buffer solution to prevent dehydration.
    Suzuki M; Sakashita T; Hattori Y; Yokota Y; Kobayashi Y; Funayama T
    J Neurosci Methods; 2018 Aug; 306():32-37. PubMed ID: 29859879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparameter evaluation of the longevity in C. elegans under stress using an integrated microfluidic device.
    Wen H; Shi W; Qin J
    Biomed Microdevices; 2012 Aug; 14(4):721-8. PubMed ID: 22526681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.