BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23831723)

  • 1. Reversible switches of DNA nanostructures between "Closed" and "Open" states and their biosensing applications.
    Sheng QL; Liu RX; Zheng JB; Zhu JJ
    Nanoscale; 2013 Aug; 5(16):7505-11. PubMed ID: 23831723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.
    Sheng Q; Liu R; Zhang S; Zheng J
    Biosens Bioelectron; 2014 Jan; 51():191-4. PubMed ID: 23962705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedimetric determination of Staphylococcal enterotoxin B using electrochemical switching with DNA triangular pyramid frustum nanostructure.
    Chen X; Shi X; Liu Y; Lu L; Lu Y; Xiong X; Liu Y; Xiong X
    Mikrochim Acta; 2018 Sep; 185(10):460. PubMed ID: 30219956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional DNA switches: rational design and electrochemical signaling.
    Tang Y; Ge B; Sen D; Yu HZ
    Chem Soc Rev; 2014 Jan; 43(2):518-29. PubMed ID: 24169924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and direct electrochemical detection of interferon-gamma using its RNA and DNA aptamers.
    Min K; Cho M; Han SY; Shim YB; Ku J; Ban C
    Biosens Bioelectron; 2008 Jul; 23(12):1819-24. PubMed ID: 18406597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-Functionalized DNA Nanostructures for Biological Applications.
    Fu X; Peng F; Lee J; Yang Q; Zhang F; Xiong M; Kong G; Meng HM; Ke G; Zhang XB
    Top Curr Chem (Cham); 2020 Feb; 378(2):21. PubMed ID: 32030541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanobioprobe mediated DNA aptamers for explosive detection.
    Priyanka ; Shorie M; Bhalla V; Pathania P; Suri CR
    Chem Commun (Camb); 2014 Feb; 50(9):1080-2. PubMed ID: 24316919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding-induced autonomous disassembly of aptamer-DNAzyme supersandwich nanostructures for sensitive electrochemiluminescence turn-on detection of ochratoxin A.
    Chen Y; Yang M; Xiang Y; Yuan R; Chai Y
    Nanoscale; 2014 Jan; 6(2):1099-104. PubMed ID: 24296915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional DNA nanostructures for theranostic applications.
    Pei H; Zuo X; Zhu D; Huang Q; Fan C
    Acc Chem Res; 2014 Feb; 47(2):550-9. PubMed ID: 24380626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A label-free impedance-based electrochemical sensor based on self-assembled dendritic DNA nanostructures for Pb
    Jin H; Dong J; Qi X; Sun X; Wei M; He B; Suo Z
    Bioelectrochemistry; 2023 Feb; 149():108312. PubMed ID: 36283191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricating a reversible and regenerable electrochemical biosensor for quantitative detection of antibody by using "triplex-stem" DNA molecular switch.
    Wei W; Zhang L; Ni Q; Pu Y; Yin L; Liu S
    Anal Chim Acta; 2014 Oct; 845():38-44. PubMed ID: 25201270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free and amplified electrochemical detection of cytokine based on hairpin aptamer and catalytic DNAzyme.
    Zhang H; Jiang B; Xiang Y; Chai Y; Yuan R
    Analyst; 2012 Feb; 137(4):1020-3. PubMed ID: 22193340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection.
    Zhao J; Chen C; Zhang L; Jiang J; Yu R
    Biosens Bioelectron; 2012; 36(1):129-34. PubMed ID: 22575639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free homogeneous electrochemical cytosensor for the ultrasensitive detection of cancer cells based on multiaptamer-functionalized DNA tetrahedral nanostructures.
    Yang L; Yin X; Gai P; Li F
    Chem Commun (Camb); 2020 Apr; 56(27):3883-3886. PubMed ID: 32134083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review.
    Green NS; Norton ML
    Anal Chim Acta; 2015 Jan; 853():127-142. PubMed ID: 25467454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays.
    Gong J; Wang X; Li X; Wang K
    Biosens Bioelectron; 2012; 38(1):43-9. PubMed ID: 22647535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of DNA nanostructures for single molecule biosensing.
    Raveendran M; Lee AJ; Sharma R; Wälti C; Actis P
    Nat Commun; 2020 Sep; 11(1):4384. PubMed ID: 32873796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing aptamers for electrochemical detection of endotoxin.
    Kim SE; Su W; Cho M; Lee Y; Choe WS
    Anal Biochem; 2012 May; 424(1):12-20. PubMed ID: 22370280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles.
    Liu J; Lu Y
    Angew Chem Int Ed Engl; 2005 Dec; 45(1):90-4. PubMed ID: 16292781
    [No Abstract]   [Full Text] [Related]  

  • 20. Nanomaterial-assisted aptamers for optical sensing.
    Wang G; Wang Y; Chen L; Choo J
    Biosens Bioelectron; 2010 Apr; 25(8):1859-68. PubMed ID: 20129770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.