BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23831723)

  • 21. Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol.
    Lin Z; Chen L; Zhang G; Liu Q; Qiu B; Cai Z; Chen G
    Analyst; 2012 Feb; 137(4):819-22. PubMed ID: 22158706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward single-DNA electrochemical biosensing by graphene nanowalls.
    Akhavan O; Ghaderi E; Rahighi R
    ACS Nano; 2012 Apr; 6(4):2904-16. PubMed ID: 22385391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic Chip for Multiplex Detection of Trace Chemical Contaminants Based on Magnetic Encoded Aptamer Probes and Multibranched DNA Nanostructures as Signal Tags.
    Chen X; Wang J; Shen HY; Su X; Cao Y; Li T; Gan N
    ACS Sens; 2019 Aug; 4(8):2131-2139. PubMed ID: 31366194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical biology: aptamers in nanoland.
    Famulok M; Mayer G
    Nature; 2006 Feb; 439(7077):666-9. PubMed ID: 16467823
    [No Abstract]   [Full Text] [Related]  

  • 25. Multifunctional label-free electrochemical biosensor based on an integrated aptamer.
    Du Y; Li B; Wei H; Wang Y; Wang E
    Anal Chem; 2008 Jul; 80(13):5110-7. PubMed ID: 18522435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA conformational polymorphism for biosensing applications.
    Hu Z; Suo Z; Liu W; Zhao B; Xing F; Zhang Y; Feng L
    Biosens Bioelectron; 2019 Apr; 131():237-249. PubMed ID: 30849723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit.
    Pilehvar S; Mehta J; Dardenne F; Robbens J; Blust R; De Wael K
    Anal Chem; 2012 Aug; 84(15):6753-8. PubMed ID: 22725137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA; Plaxco KW
    Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene enhanced electron transfer at aptamer modified electrode and its application in biosensing.
    Wang L; Xu M; Han L; Zhou M; Zhu C; Dong S
    Anal Chem; 2012 Sep; 84(17):7301-7. PubMed ID: 22876875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzyme-free and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures.
    Chen X; Hong CY; Lin YH; Chen JH; Chen GN; Yang HH
    Anal Chem; 2012 Oct; 84(19):8277-83. PubMed ID: 22950631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing.
    Wang L; Ye Y; Zhu H; Song Y; He S; Xu F; Hou H
    Nanotechnology; 2012 Nov; 23(45):455502. PubMed ID: 23090569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron phosphate nanostructures synthesized by microwave method and their applications in biosensing.
    Yin Y; Zhang H; Wu P; Zhou B; Cai C
    Nanotechnology; 2010 Oct; 21(42):425504. PubMed ID: 20864779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An aptazyme-based electrochemical biosensor for the detection of adenosine.
    Sun C; Liu X; Feng K; Jiang J; Shen G; Yu R
    Anal Chim Acta; 2010 Jun; 669(1-2):87-93. PubMed ID: 20510908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers.
    Pei H; Li J; Lv M; Wang J; Gao J; Lu J; Li Y; Huang Q; Hu J; Fan C
    J Am Chem Soc; 2012 Aug; 134(33):13843-9. PubMed ID: 22849568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy.
    Meng HM; Liu H; Kuai H; Peng R; Mo L; Zhang XB
    Chem Soc Rev; 2016 May; 45(9):2583-602. PubMed ID: 26954935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical synthesis of gold nanostructure modified electrode and its development in electrochemical DNA biosensor.
    Wang L; Chen X; Wang X; Han X; Liu S; Zhao C
    Biosens Bioelectron; 2011 Dec; 30(1):151-7. PubMed ID: 21963391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures.
    Niu X; Lan M; Zhao H; Chen C
    Anal Chem; 2013 Apr; 85(7):3561-9. PubMed ID: 23458297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood.
    Zhao S; Yang W; Lai RY
    Biosens Bioelectron; 2011 Jan; 26(5):2442-7. PubMed ID: 21081271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA as a support for glucose oxidase immobilization at Prussian blue-modified glassy carbon electrode in biosensor preparation.
    Kafi AK; Lee DY; Park SH; Kwon YS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3539-42. PubMed ID: 17252806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical aptasensor of human cellular prion based on multiwalled carbon nanotubes modified with dendrimers: a platform for connecting redox markers and aptamers.
    Miodek A; Castillo G; Hianik T; Korri-Youssoufi H
    Anal Chem; 2013 Aug; 85(16):7704-12. PubMed ID: 23822753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.