These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23831964)

  • 1. Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles.
    Liu Y; Huang CZ
    Nanoscale; 2013 Aug; 5(16):7458-66. PubMed ID: 23831964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys.
    Liu Y; Huang CZ
    ACS Nano; 2013 Dec; 7(12):11026-34. PubMed ID: 24279755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark-field microscopy in imaging of plasmon resonant nanoparticles.
    Liu M; Chao J; Deng S; Wang K; Li K; Fan C
    Colloids Surf B Biointerfaces; 2014 Dec; 124():111-7. PubMed ID: 25009105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A galvanic exchange process visualized on single silver nanoparticles via dark-field microscopy imaging.
    Zhou J; Yang T; He W; Pan ZY; Huang CZ
    Nanoscale; 2018 Jul; 10(26):12805-12812. PubMed ID: 29947404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ investigating the size-dependent scattering signatures and sensing sensitivity of single silver nanocube through a multi-model approach.
    Pan ZY; Zhou J; Zou HY; Li YF; Gao PF; Huang CZ
    J Colloid Interface Sci; 2021 Feb; 584():253-262. PubMed ID: 33069024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10616-27. PubMed ID: 23417070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability.
    Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S
    Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO.
    Vilayurganapathy S; Devaraj A; Colby R; Pandey A; Varga T; Shutthanandan V; Manandhar S; El-Khoury PZ; Kayani A; Hess WP; Thevuthasan S
    Nanotechnology; 2013 Mar; 24(9):095707. PubMed ID: 23403363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Change of a Single Ag Nanoparticle Observed by Dark-field Microspectroscopy.
    Pang J; Liu HL; Li J; Zhai TT; Wang K; Xia XH
    Chemphyschem; 2018 Apr; 19(8):954-958. PubMed ID: 29383796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multispectral Localized Surface Plasmon Resonance (msLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles.
    Palani S; Kenison JP; Sabuncu S; Huang T; Civitci F; Esener S; Nan X
    ACS Nano; 2023 Feb; 17(3):2266-2278. PubMed ID: 36660770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elemental mercury vapor interaction with individual gold nanorods.
    James JZ; Lucas D; Koshland CP
    Analyst; 2013 Apr; 138(8):2323-8. PubMed ID: 23446550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape effect on a single-nanoparticle-based plasmonic nanosensor.
    Shen H; Lu G; Zhang T; Liu J; Gu Y; Perriat P; Martini M; Tillement O; Gong Q
    Nanotechnology; 2013 Jul; 24(28):285502. PubMed ID: 23792456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2.
    Tsuji M; Gomi S; Maeda Y; Matsunaga M; Hikino S; Uto K; Tsuji T; Kawazumi H
    Langmuir; 2012 Jun; 28(24):8845-61. PubMed ID: 22506506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dark-field spectroscopy: development, applications and perspectives in single nanoparticle catalysis.
    Wang H; Zhang T; Zhou X
    J Phys Condens Matter; 2019 Nov; 31(47):473001. PubMed ID: 31315095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential-Scanning Localized Surface Plasmon Resonance Sensor.
    Nishi H; Hiroya S; Tatsuma T
    ACS Nano; 2015 Jun; 9(6):6214-21. PubMed ID: 26030715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single plasmonic nanoparticles as ultrasensitive sensors.
    Xie T; Jing C; Long YT
    Analyst; 2017 Jan; 142(3):409-420. PubMed ID: 28004043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.