These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 23832003)
1. Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger. van Munster JM; Nitsche BM; Krijgsheld P; van Wijk A; Dijkhuizen L; Wösten HA; Ram AF; van der Maarel MJEC Microbiology (Reading); 2013 Sep; 159(Pt 9):1853-1867. PubMed ID: 23832003 [TBL] [Abstract][Full Text] [Related]
2. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. van Munster JM; van der Kaaij RM; Dijkhuizen L; van der Maarel MJEC Microbiology (Reading); 2012 Aug; 158(Pt 8):2168-2179. PubMed ID: 22575895 [TBL] [Abstract][Full Text] [Related]
3. Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA. van Munster JM; Nitsche BM; Akeroyd M; Dijkhuizen L; van der Maarel MJ; Ram AF PLoS One; 2015; 10(1):e0116269. PubMed ID: 25629352 [TBL] [Abstract][Full Text] [Related]
4. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. van Munster JM; Sanders P; ten Kate GA; Dijkhuizen L; van der Maarel MJ Carbohydr Res; 2015 Apr; 407():73-8. PubMed ID: 25723623 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the starvation-induced chitinase CfcA and α-1,3-glucanase AgnB of Aspergillus niger. van Munster JM; Dobruchowska JM; Veloo R; Dijkhuizen L; van der Maarel MJ Appl Microbiol Biotechnol; 2015 Mar; 99(5):2209-23. PubMed ID: 25219534 [TBL] [Abstract][Full Text] [Related]
6. Maturation of conidia on conidiophores of Aspergillus niger. Teertstra WR; Tegelaar M; Dijksterhuis J; Golovina EA; Ohm RA; Wösten HAB Fungal Genet Biol; 2017 Jan; 98():61-70. PubMed ID: 28011318 [TBL] [Abstract][Full Text] [Related]
7. Submerged conidiation and product formation by Aspergillus niger at low specific growth rates are affected in aerial developmental mutants. Jørgensen TR; Nielsen KF; Arentshorst M; Park J; van den Hondel CA; Frisvad JC; Ram AF Appl Environ Microbiol; 2011 Aug; 77(15):5270-7. PubMed ID: 21652743 [TBL] [Abstract][Full Text] [Related]
8. Cytosolic streaming in vegetative mycelium and aerial structures of Aspergillus niger. Bleichrodt R; Vinck A; Krijgsheld P; van Leeuwen MR; Dijksterhuis J; Wösten HA Stud Mycol; 2013 Mar; 74(1):31-46. PubMed ID: 23450745 [TBL] [Abstract][Full Text] [Related]
9. Potent Fungal Chitinase for the Bioconversion of Mycelial Waste. Liu T; Han H; Wang D; Guo X; Zhou Y; Fukamizo T; Yang Q J Agric Food Chem; 2020 May; 68(19):5384-5390. PubMed ID: 32275147 [No Abstract] [Full Text] [Related]
10. Effect of Spumol K on cell wall of Aspergillus niger strains characterized by different tolerance to toxic compounds of beet molasses. Gabara B; Zakowska Z Acta Microbiol Pol; 1997; 46(2):219-23. PubMed ID: 9429292 [TBL] [Abstract][Full Text] [Related]
11. Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger. Krijgsheld P; Nitsche BM; Post H; Levin AM; Müller WH; Heck AJ; Ram AF; Altelaar AF; Wösten HA J Proteome Res; 2013 Apr; 12(4):1808-19. PubMed ID: 23461488 [TBL] [Abstract][Full Text] [Related]
12. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture. Wang F; Dijksterhuis J; Wyatt T; Wösten HA; Bleichrodt RJ Antonie Van Leeuwenhoek; 2015 Jan; 107(1):187-99. PubMed ID: 25367340 [TBL] [Abstract][Full Text] [Related]
13. Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Zhou J; Kang L; Liu C; Niu X; Wang X; Liu H; Zhang W; Liu Z; Latgé JP; Yuan S Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126941 [TBL] [Abstract][Full Text] [Related]
14. FlbA-Regulated Gene Aerts D; van den Bergh SG; Post H; Altelaar MAF; Arentshorst M; Ram AFJ; Ohm RA; Wösten HAB Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413474 [TBL] [Abstract][Full Text] [Related]
15. Spatial and developmental differentiation of mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase in Aspergillus niger. Aguilar-Osorio G; Vankuyk PA; Seiboth B; Blom D; Solomon PS; Vinck A; Kindt F; Wösten HA; de Vries RP Eukaryot Cell; 2010 Sep; 9(9):1398-402. PubMed ID: 20305000 [TBL] [Abstract][Full Text] [Related]
16. Identification of SclB, a Zn(II) Jørgensen TR; Burggraaf AM; Arentshorst M; Schutze T; Lamers G; Niu J; Kwon MJ; Park J; Frisvad JC; Nielsen KF; Meyer V; van den Hondel CAMJJ; Dyer PS; Ram AFJ Fungal Genet Biol; 2020 Jun; 139():103377. PubMed ID: 32251730 [TBL] [Abstract][Full Text] [Related]
17. α1,3 glucans are dispensable in Aspergillus fumigatus. Henry C; Latgé JP; Beauvais A Eukaryot Cell; 2012 Jan; 11(1):26-9. PubMed ID: 22058140 [TBL] [Abstract][Full Text] [Related]
18. The pleiotropic phenotype of FlbA of Aspergillus niger is explained in part by the activity of seven of its downstream-regulated transcription factors. Chen X; Moran Torres JP; Jan Vonk P; Damen JMA; Reiding KR; Dijksterhuis J; Lugones LG; Wösten HAB Fungal Genet Biol; 2024 Jun; 172():103894. PubMed ID: 38657897 [TBL] [Abstract][Full Text] [Related]
19. Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Yamazaki H; Tanaka A; Kaneko J; Ohta A; Horiuchi H Fungal Genet Biol; 2008 Jun; 45(6):963-72. PubMed ID: 18420434 [TBL] [Abstract][Full Text] [Related]
20. Identification of a novel chitinase from Aeromonas hydrophila AH-1N for the degradation of chitin within fungal mycelium. Stumpf AK; Vortmann M; Dirks-Hofmeister ME; Moerschbacher BM; Philipp B FEMS Microbiol Lett; 2019 Jan; 366(1):. PubMed ID: 30596975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]