These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23832004)

  • 1. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications.
    Rockwood J; Mao D; Grogan DW
    Microbiology (Reading); 2013 Sep; 159(Pt 9):1888-1899. PubMed ID: 23832004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombination of synthetic oligonucleotides with prokaryotic chromosomes: substrate requirements of the Escherichia coli/lambdaRed and Sulfolobus acidocaldarius recombination systems.
    Grogan DW; Stengel KR
    Mol Microbiol; 2008 Sep; 69(5):1255-65. PubMed ID: 18631240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homologous recombination in Sulfolobus acidocaldarius: genetic assays and functional properties.
    Grogan DW
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):88-91. PubMed ID: 19143608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures.
    Schmidt KJ; Beck KE; Grogan DW
    Genetics; 1999 Aug; 152(4):1407-15. PubMed ID: 10430571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius.
    Mao D; Grogan DW
    J Bacteriol; 2017 Sep; 199(17):. PubMed ID: 28630130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discontinuity and limited linkage in the homologous recombination system of a hyperthermophilic archaeon.
    Grogan DW; Rockwood J
    J Bacteriol; 2010 Sep; 192(18):4660-8. PubMed ID: 20644140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses.
    Kurosawa N; Grogan DW
    FEMS Microbiol Lett; 2005 Dec; 253(1):141-9. PubMed ID: 16243457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus.
    Wagner M; Berkner S; Ajon M; Driessen AJ; Lipps G; Albers SV
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):97-101. PubMed ID: 19143610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh.
    Sakofsky CJ; Grogan DW
    Genetics; 2015 Oct; 201(2):513-23. PubMed ID: 26224736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius: intragenic recombination with minimal dependence on marker separation.
    Hansen JE; Dill AC; Grogan DW
    J Bacteriol; 2005 Jan; 187(2):805-9. PubMed ID: 15629955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota.
    Chen L; Brügger K; Skovgaard M; Redder P; She Q; Torarinsson E; Greve B; Awayez M; Zibat A; Klenk HP; Garrett RA
    J Bacteriol; 2005 Jul; 187(14):4992-9. PubMed ID: 15995215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endonucleases responsible for DNA repair of helix-distorting DNA lesions in the thermophilic crenarchaeon Sulfolobus acidocaldarius in vivo.
    Suzuki S; Kurosawa N
    Extremophiles; 2019 Sep; 23(5):613-624. PubMed ID: 31377865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heteroduplex formation, mismatch resolution, and genetic sectoring during homologous recombination in the hyperthermophilic archaeon sulfolobus acidocaldarius.
    Mao D; Grogan DW
    Front Microbiol; 2012; 3():192. PubMed ID: 22679441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the gene encoding restriction endonuclease SuaI and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Suzuki S; Kurosawa N
    Extremophiles; 2016 Mar; 20(2):139-48. PubMed ID: 26791382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global analysis of mRNA stability in the archaeon Sulfolobus.
    Andersson AF; Lundgren M; Eriksson S; Rosenlund M; Bernander R; Nilsson P
    Genome Biol; 2006; 7(10):R99. PubMed ID: 17067383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    Reilly MS; Grogan DW
    FEMS Microbiol Lett; 2002 Feb; 208(1):29-34. PubMed ID: 11934490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered patterns of cellular growth, morphology, replication and division in conditional-lethal mutants of the thermophilic archaeon Sulfolobus acidocaldarius.
    Bernander R; Poplawski A; Grogan DW
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():749-757. PubMed ID: 10746779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes.
    Robinson NP; Bell SD
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5806-11. PubMed ID: 17392430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale architecture of archaeal chromosomes.
    Takemata N; Bell SD
    Mol Cell; 2021 Feb; 81(3):473-487.e6. PubMed ID: 33382983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin Immunoprecipitation Assay in the Hyperthermoacidophilic Crenarchaeon, Sulfolobus acidocaldarius.
    Wang K; Lindås AC
    Methods Mol Biol; 2018; 1689():139-146. PubMed ID: 29027171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.