These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Kim SM; Chae MK; Yim MS; Jeong IH; Cho J; Lee C; Ryu EK Biomaterials; 2013 Nov; 34(33):8114-21. PubMed ID: 23932293 [TBL] [Abstract][Full Text] [Related]
4. On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging. Adamiano A; Iafisco M; Sandri M; Basini M; Arosio P; Canu T; Sitia G; Esposito A; Iannotti V; Ausanio G; Fragogeorgi E; Rouchota M; Loudos G; Lascialfari A; Tampieri A Acta Biomater; 2018 Jun; 73():458-469. PubMed ID: 29689381 [TBL] [Abstract][Full Text] [Related]
5. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. Lee HY; Li Z; Chen K; Hsu AR; Xu C; Xie J; Sun S; Chen X J Nucl Med; 2008 Aug; 49(8):1371-9. PubMed ID: 18632815 [TBL] [Abstract][Full Text] [Related]
6. Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents. Bouziotis P; Psimadas D; Tsotakos T; Stamopoulos D; Tsoukalas C Curr Top Med Chem; 2012; 12(23):2694-702. PubMed ID: 23339765 [TBL] [Abstract][Full Text] [Related]
7. Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study. Karageorgou MA; Vranješ-Djurić S; Radović M; Lyberopoulou A; Antić B; Rouchota M; Gazouli M; Loudos G; Xanthopoulos S; Sideratou Z; Stamopoulos D; Bouziotis P; Tsoukalas C Contrast Media Mol Imaging; 2017; 2017():6951240. PubMed ID: 29445321 [TBL] [Abstract][Full Text] [Related]
8. Fast synthesis and bioconjugation of (68) Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging. Pellico J; Ruiz-Cabello J; Saiz-Alía M; Del Rosario G; Caja S; Montoya M; Fernández de Manuel L; Morales MP; Gutiérrez L; Galiana B; Enríquez JA; Herranz F Contrast Media Mol Imaging; 2016 May; 11(3):203-10. PubMed ID: 26748837 [TBL] [Abstract][Full Text] [Related]
9. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Ma Y; Tong S; Bao G; Gao C; Dai Z Biomaterials; 2013 Oct; 34(31):7706-14. PubMed ID: 23871538 [TBL] [Abstract][Full Text] [Related]
10. Integrity of (111)In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Wang H; Kumar R; Nagesha D; Duclos RI; Sridhar S; Gatley SJ Nucl Med Biol; 2015 Jan; 42(1):65-70. PubMed ID: 25277378 [TBL] [Abstract][Full Text] [Related]
11. Tunable and noncytotoxic PET/SPECT-MRI multimodality imaging probes using colloidally stable ligand-free superparamagnetic iron oxide nanoparticles. Pham TN; Lengkeek NA; Greguric I; Kim BJ; Pellegrini PA; Bickley SA; Tanudji MR; Jones SK; Hawkett BS; Pham BT Int J Nanomedicine; 2017; 12():899-909. PubMed ID: 28184160 [TBL] [Abstract][Full Text] [Related]
12. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Yang F; Li Y; Chen Z; Zhang Y; Wu J; Gu N Biomaterials; 2009 Aug; 30(23-24):3882-90. PubMed ID: 19395082 [TBL] [Abstract][Full Text] [Related]
13. In vivo evaluation of (64)Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Glaus C; Rossin R; Welch MJ; Bao G Bioconjug Chem; 2010 Apr; 21(4):715-22. PubMed ID: 20353170 [TBL] [Abstract][Full Text] [Related]
14. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Cui X; Belo S; Krüger D; Yan Y; de Rosales RT; Jauregui-Osoro M; Ye H; Su S; Mathe D; Kovács N; Horváth I; Semjeni M; Sunassee K; Szigeti K; Green MA; Blower PJ Biomaterials; 2014 Jul; 35(22):5840-6. PubMed ID: 24768194 [TBL] [Abstract][Full Text] [Related]
15. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging. Huang H; Xie Q; Kang M; Zhang B; Zhang H; Chen J; Zhai C; Yang D; Jiang B; Wu Y Nanotechnology; 2009 Sep; 20(36):365101. PubMed ID: 19687538 [TBL] [Abstract][Full Text] [Related]
16. Development of Ga-68 labeled, biotinylated thiosemicarbazone dextran-coated iron oxide nanoparticles as multimodal PET/MRI probe. Gholipour N; Akhlaghi M; Mokhtari Kheirabadi A; Geramifar P; Beiki D Int J Biol Macromol; 2020 Apr; 148():932-941. PubMed ID: 31981670 [TBL] [Abstract][Full Text] [Related]
17. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Sharifi S; Seyednejad H; Laurent S; Atyabi F; Saei AA; Mahmoudi M Contrast Media Mol Imaging; 2015; 10(5):329-55. PubMed ID: 25882768 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Jarrett BR; Gustafsson B; Kukis DL; Louie AY Bioconjug Chem; 2008 Jul; 19(7):1496-504. PubMed ID: 18578485 [TBL] [Abstract][Full Text] [Related]
19. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Li J; Zheng L; Cai H; Sun W; Shen M; Zhang G; Shi X Biomaterials; 2013 Nov; 34(33):8382-92. PubMed ID: 23932250 [TBL] [Abstract][Full Text] [Related]
20. Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. Wong RM; Gilbert DA; Liu K; Louie AY ACS Nano; 2012 Apr; 6(4):3461-7. PubMed ID: 22417124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]