These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23832338)

  • 21. A novel lime pretreatment for subsequent bioethanol production from rice straw--calcium capturing by carbonation (CaCCO) process.
    Park JY; Shiroma R; Al-Haq MI; Zhang Y; Ike M; Arai-Sanoh Y; Ida A; Kondo M; Tokuyasu K
    Bioresour Technol; 2010 Sep; 101(17):6805-11. PubMed ID: 20382526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.
    Kato H; Suyama H; Yamada R; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1585-92. PubMed ID: 22406859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.
    Matsushika A; Sawayama S
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2094-104. PubMed ID: 23076570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae.
    Olofsson K; Rudolf A; Lidén G
    J Biotechnol; 2008 Mar; 134(1-2):112-20. PubMed ID: 18294716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioethanol production from Ipomoea carnea biomass using a potential hybrid yeast strain.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2013 Oct; 171(3):771-85. PubMed ID: 23892623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae.
    Lee YG; Jin YS; Cha YL; Seo JH
    Bioresour Technol; 2017 Mar; 228():355-361. PubMed ID: 28088640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae.
    Kato H; Matsuda F; Yamada R; Nagata K; Shirai T; Hasunuma T; Kondo A
    J Biosci Bioeng; 2013 Sep; 116(3):333-6. PubMed ID: 23651809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis.
    Lin TH; Huang CF; Guo GL; Hwang WS; Huang SL
    Bioresour Technol; 2012 Jul; 116():314-9. PubMed ID: 22537402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability.
    Matsushika A; Sawayama S
    Appl Biochem Biotechnol; 2010 Nov; 162(7):1952-60. PubMed ID: 20432070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw.
    Fonseca C; Olofsson K; Ferreira C; Runquist D; Fonseca LL; Hahn-Hägerdal B; Lidén G
    Enzyme Microb Technol; 2011 May; 48(6-7):518-25. PubMed ID: 22113025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process.
    Shinozaki Y; Kitamoto HK
    J Biosci Bioeng; 2011 Mar; 111(3):320-5. PubMed ID: 21163697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.
    Matsushika A; Goshima T; Hoshino T
    Microb Cell Fact; 2014 Jan; 13():16. PubMed ID: 24467867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S
    J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate.
    Hickert LR; da Cunha-Pereira F; de Souza-Cruz PB; Rosa CA; Ayub MA
    Bioresour Technol; 2013 Mar; 131():508-14. PubMed ID: 23391739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pretreatment of rice straw using a butanone or an acetaldehyde dilute solution explosion for producing ethanol.
    Zhang J; Zhang WX; Yang J; Liu YH; Zhong X; Wu ZY; Kida K; Deng Y
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1856-70. PubMed ID: 22371064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains.
    Zaldivar J; Roca C; Le Foll C; Hahn-Hägerdal B; Olsson L
    Bioresour Technol; 2005 Oct; 96(15):1670-6. PubMed ID: 16023569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid process for ethanol production from rice straw.
    Chadha BS; Kanwar SS; Saini HS; Garcha HS
    Acta Microbiol Immunol Hung; 1995; 42(1):53-9. PubMed ID: 7620813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations.
    Xiong M; Chen G; Barford J
    Bioresour Technol; 2011 Oct; 102(19):9206-15. PubMed ID: 21831633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.