These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 23832529)
1. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases. Michalko J; Socha P; Mészáros P; Blehová A; Libantová J; Moravčíková J; Matušíková I Planta; 2013 Oct; 238(4):715-25. PubMed ID: 23832529 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase. Michalko J; Renner T; Mészáros P; Socha P; Moravčíková J; Blehová A; Libantová J; Polóniová Z; Matušíková I Planta; 2017 Jan; 245(1):77-91. PubMed ID: 27580619 [TBL] [Abstract][Full Text] [Related]
3. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Matusíková I; Salaj J; Moravcíková J; Mlynárová L; Nap JP; Libantová J Planta; 2005 Dec; 222(6):1020-7. PubMed ID: 16049675 [TBL] [Abstract][Full Text] [Related]
4. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis. Pavlovič A; Krausko M; Libiaková M; Adamec L Ann Bot; 2014 Jan; 113(1):69-78. PubMed ID: 24201141 [TBL] [Abstract][Full Text] [Related]
5. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. Hatcher CR; Sommer U; Heaney LM; Millett J Ann Bot; 2021 Aug; 128(3):301-314. PubMed ID: 34077503 [TBL] [Abstract][Full Text] [Related]
6. Resource availability affects investment in carnivory in Drosera rotundifolia. Thorén LM; Tuomi J; Kämäräinen T; Laine K New Phytol; 2003 Aug; 159(2):507-511. PubMed ID: 33873350 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Jopcik M; Moravcikova J; Matusikova I; Bauer M; Rajninec M; Libantova J Planta; 2017 Feb; 245(2):313-327. PubMed ID: 27761648 [TBL] [Abstract][Full Text] [Related]
8. An acidophilic fungus promotes prey digestion in a carnivorous plant. Sun PF; Lu MR; Liu YC; Shaw BJP; Lin CP; Chen HW; Lin YF; Hoh DZ; Ke HM; Wang IF; Lu MJ; Young EB; Millett J; Kirschner R; Lin YJ; Chen YL; Tsai IJ Nat Microbiol; 2024 Oct; 9(10):2522-2537. PubMed ID: 39090391 [TBL] [Abstract][Full Text] [Related]
9. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. Krausko M; Perutka Z; Šebela M; Šamajová O; Šamaj J; Novák O; Pavlovič A New Phytol; 2017 Mar; 213(4):1818-1835. PubMed ID: 27933609 [TBL] [Abstract][Full Text] [Related]
14. A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps. Pavlovič A; Krausko M; Adamec L Plant Physiol Biochem; 2016 Jul; 104():11-6. PubMed ID: 26998942 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia. Millett J; Foot GW; Svensson BM Sci Total Environ; 2015 Apr; 512-513():631-636. PubMed ID: 25655989 [TBL] [Abstract][Full Text] [Related]
16. A spotlight on prey-induced metabolite dynamics in sundew. A commentary on: 'Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis'. Mithöfer A Ann Bot; 2021 Aug; 128(3):v-vi. PubMed ID: 34302338 [TBL] [Abstract][Full Text] [Related]
17. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis. Butts CT; Bierma JC; Martin RW Proteins; 2016 Oct; 84(10):1517-33. PubMed ID: 27353064 [TBL] [Abstract][Full Text] [Related]
18. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. Adamec L; Matušíková I; Pavlovič A Ann Bot; 2021 Aug; 128(3):241-259. PubMed ID: 34111238 [TBL] [Abstract][Full Text] [Related]
19. Eng1 and Exg8 Are the Major β-Glucanases Secreted by the Fungal Pathogen Garfoot AL; Dearing KL; VanSchoiack AD; Wysocki VH; Rappleye CA J Biol Chem; 2017 Mar; 292(12):4801-4810. PubMed ID: 28154008 [TBL] [Abstract][Full Text] [Related]
20. Reliance on prey-derived nitrogen by the carnivorous plant Drosera rotundifolia decreases with increasing nitrogen deposition. Millett J; Svensson BM; Newton J; Rydin H New Phytol; 2012 Jul; 195(1):182-8. PubMed ID: 22506640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]