BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23832572)

  • 1. Bacterial growth and adaptation in microdroplet chemostats.
    Jakiela S; Kaminski TS; Cybulski O; Weibel DB; Garstecki P
    Angew Chem Int Ed Engl; 2013 Aug; 52(34):8908-11. PubMed ID: 23832572
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of Evolutionary Trajectories Associated with Antimicrobial Resistance Using Microfluidics.
    Seo S; Disney-McKeethen S; Prabhakar RG; Song X; Mehta HH; Shamoo Y
    ACS Infect Dis; 2022 Jan; 8(1):242-254. PubMed ID: 34962128
    [No Abstract]   [Full Text] [Related]  

  • 3. The functional basis of adaptive evolution in chemostats.
    Gresham D; Hong J
    FEMS Microbiol Rev; 2015 Jan; 39(1):2-16. PubMed ID: 25098268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Technology development and instrumentation of a high-throughput and automated microbial microdroplet culture system for microbial evolution and screening].
    Guo X; Wang L; Zhang C; Xing XH
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):991-1003. PubMed ID: 33783163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput phenotyping of cell-to-cell interactions in gel microdroplet pico-cultures.
    Ohan J; Pelle B; Nath P; Huang JH; Hovde B; Vuyisich M; Dichosa AE; Starkenburg SR
    Biotechniques; 2019 May; 66(5):218-224. PubMed ID: 31050307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary feedback mediated through population density, illustrated with viruses in chemostats.
    Bull JJ; Millstein J; Orcutt J; Wichman HA
    Am Nat; 2006 Feb; 167(2):E39-51. PubMed ID: 16670974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and use of multiplexed chemostat arrays.
    Miller AW; Befort C; Kerr EO; Dunham MJ
    J Vis Exp; 2013 Feb; (72):e50262. PubMed ID: 23462663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Cell-Free Transcription-Translation Reactions in Microfluidic Chemostats Augmented with Hydrogel Membranes for Continuous Small Molecule Dialysis.
    Lavickova B; Grasemann L; Maerkl SJ
    ACS Synth Biol; 2022 Dec; 11(12):4134-4141. PubMed ID: 36475685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats.
    Wright NR; Rønnest NP; Sonnenschein N
    Front Bioeng Biotechnol; 2020; 8():579841. PubMed ID: 33392163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atypical lymphoid proliferation in capillary hemangioma: a finding related to bacterial infection?
    Cesinaro AM; Luca RB
    J Cutan Pathol; 2010 Sep; 37(9):1021-2. PubMed ID: 19922482
    [No Abstract]   [Full Text] [Related]  

  • 12. Evaluating the effects of chlortetracycline on the proliferation of antibiotic-resistant bacteria in a simulated river water ecosystem.
    Muñoz-Aguayo J; Lang KS; LaPara TM; González G; Singer RS
    Appl Environ Microbiol; 2007 Sep; 73(17):5421-5. PubMed ID: 17616621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of chemostats in microbial systems biology.
    Ziv N; Brandt NJ; Gresham D
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24145466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dodecylresorufin (C12R) Outperforms Resorufin in Microdroplet Bacterial Assays.
    Scheler O; Kaminski TS; Ruszczak A; Garstecki P
    ACS Appl Mater Interfaces; 2016 May; 8(18):11318-25. PubMed ID: 27100211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics for adaptation of microorganisms to stress: design and application.
    Zoheir AE; Stolle C; Rabe KS
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):162. PubMed ID: 38252163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial microdroplet culture system (MMC): An integrated platform for automated, high-throughput microbial cultivation and adaptive evolution.
    Jian X; Guo X; Wang J; Tan ZL; Xing XH; Wang L; Zhang C
    Biotechnol Bioeng; 2020 Jun; 117(6):1724-1737. PubMed ID: 32159223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Microbial Cultivation and Adaptive Evolution using Microbial Microdroplet Culture System (MMC).
    Jian X; Guo X; Wang J; Tan ZL; Xing XH; Wang L; Zhang C
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Single-Cell Microbiological Analysis: Toward Precision Management of Infections and Dysbiosis.
    Li H; Morowitz M; Thomas N; Wong PK
    SLAS Technol; 2019 Dec; 24(6):603-605. PubMed ID: 31448654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat.
    Marsh PD; Hunter JR; Bowden GH; Hamilton IR; McKee AS; Hardie JM; Ellwood DC
    J Gen Microbiol; 1983 Mar; 129(3):755-70. PubMed ID: 6348208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combating Antimicrobial Resistance via Single-Cell Diagnostic Technologies Powered by Droplet Microfluidics.
    Hsieh K; Mach KE; Zhang P; Liao JC; Wang TH
    Acc Chem Res; 2022 Jan; 55(2):123-133. PubMed ID: 34898173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.