These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 23832658)
1. Production of bioactive volatiles by different Burkholderia ambifaria strains. Groenhagen U; Baumgartner R; Bailly A; Gardiner A; Eberl L; Schulz S; Weisskopf L J Chem Ecol; 2013 Jul; 39(7):892-906. PubMed ID: 23832658 [TBL] [Abstract][Full Text] [Related]
2. Burkholderia ambifaria H8 as an effective biocontrol strain against maize stalk rot via producing volatile dimethyl disulfide. Chen X; Liu J; Chen AJ; Wang L; Jiang X; Gong A; Liu W; Wu H Pest Manag Sci; 2024 Aug; 80(8):4125-4136. PubMed ID: 38578571 [TBL] [Abstract][Full Text] [Related]
3. Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp. Cordovez V; Schop S; Hordijk K; Dupré de Boulois H; Coppens F; Hanssen I; Raaijmakers JM; Carrión VJ Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30194105 [TBL] [Abstract][Full Text] [Related]
4. Modulation of Arabidopsis thaliana growth by volatile substances emitted by Pseudomonas and Serratia strains. Plyuta VA; Chernikova AS; Sidorova DE; Kupriyanova EV; Koksharova OA; Chernin LS; Khmel IA World J Microbiol Biotechnol; 2021 Apr; 37(5):82. PubMed ID: 33855623 [TBL] [Abstract][Full Text] [Related]
5. Biological activity of volatiles produced by the strains of two Pseudomonas and two Serratia species. Sidorova DE; Khmel IA; Chernikova AS; Chupriyanova TA; Plyuta VA Folia Microbiol (Praha); 2023 Aug; 68(4):617-626. PubMed ID: 36790684 [TBL] [Abstract][Full Text] [Related]
6. A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Simonetti E; Roberts IN; Montecchia MS; Gutierrez-Boem FH; Gomez FM; Ruiz JA Microbiol Res; 2018 Jan; 206():50-59. PubMed ID: 29146260 [TBL] [Abstract][Full Text] [Related]
7. Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. Vial L; Lépine F; Milot S; Groleau MC; Dekimpe V; Woods DE; Déziel E J Bacteriol; 2008 Aug; 190(15):5339-52. PubMed ID: 18539738 [TBL] [Abstract][Full Text] [Related]
8. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Tenorio-Salgado S; Tinoco R; Vazquez-Duhalt R; Caballero-Mellado J; Perez-Rueda E Bioengineered; 2013; 4(4):236-43. PubMed ID: 23680857 [TBL] [Abstract][Full Text] [Related]
9. Interplay between 4-Hydroxy-3-Methyl-2-Alkylquinoline and Chapalain A; Groleau MC; Le Guillouzer S; Miomandre A; Vial L; Milot S; Déziel E Front Microbiol; 2017; 8():1021. PubMed ID: 28676791 [TBL] [Abstract][Full Text] [Related]
10. Fungicidal Activity of Volatile Organic Compounds Emitted by Lin YT; Lee CC; Leu WM; Wu JJ; Huang YC; Meng M Molecules; 2021 Jan; 26(3):. PubMed ID: 33572680 [TBL] [Abstract][Full Text] [Related]
11. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Sánchez-López ÁM; Baslam M; De Diego N; Muñoz FJ; Bahaji A; Almagro G; Ricarte-Bermejo A; García-Gómez P; Li J; Humplík JF; Novák O; Spíchal L; Doležal K; Baroja-Fernández E; Pozueta-Romero J Plant Cell Environ; 2016 Dec; 39(12):2592-2608. PubMed ID: 27092473 [TBL] [Abstract][Full Text] [Related]
12. Quorum-Sensing Systems in the Plant Growth-Promoting Bacterium Paraburkholderia phytofirmans PsJN Exhibit Cross-Regulation and Are Involved in Biofilm Formation. Zúñiga A; Donoso RA; Ruiz D; Ruz GA; González B Mol Plant Microbe Interact; 2017 Jul; 30(7):557-565. PubMed ID: 28548604 [TBL] [Abstract][Full Text] [Related]
13. Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Chapalain A; Vial L; Laprade N; Dekimpe V; Perreault J; Déziel E Microbiologyopen; 2013 Apr; 2(2):226-42. PubMed ID: 23382083 [TBL] [Abstract][Full Text] [Related]
15. Volatile organic compounds emitted by Lee S; Yap M; Behringer G; Hung R; Bennett JW Fungal Biol Biotechnol; 2016; 3():7. PubMed ID: 28955466 [TBL] [Abstract][Full Text] [Related]
16. Volatiles from soil-borne fungi affect directional growth of roots. Moisan K; Raaijmakers JM; Dicke M; Lucas-Barbosa D; Cordovez V Plant Cell Environ; 2021 Jan; 44(1):339-345. PubMed ID: 32996612 [TBL] [Abstract][Full Text] [Related]
17. Effects of volatile sulfur compounds on growth and oxidative stress of Rhizobium leguminosarum E20-8 exposed to cadmium. Sá C; Matos D; Pires A; Cardoso P; Figueira E Sci Total Environ; 2021 Dec; 800():149478. PubMed ID: 34391142 [TBL] [Abstract][Full Text] [Related]
18. Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. Schmidt S; Blom JF; Pernthaler J; Berg G; Baldwin A; Mahenthiralingam E; Eberl L Environ Microbiol; 2009 Jun; 11(6):1422-37. PubMed ID: 19220396 [TBL] [Abstract][Full Text] [Related]
19. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Sheoran N; Valiya Nadakkakath A; Munjal V; Kundu A; Subaharan K; Venugopal V; Rajamma S; Eapen SJ; Kumar A Microbiol Res; 2015 Apr; 173():66-78. PubMed ID: 25801973 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. Popova AA; Koksharova OA; Lipasova VA; Zaitseva JV; Katkova-Zhukotskaya OA; Eremina SIu; Mironov AS; Chernin LS; Khmel IA Biomed Res Int; 2014; 2014():125704. PubMed ID: 25006575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]