These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 23833331)
1. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows. Borazjani I; Ge L; Le T; Sotiropoulos F Comput Fluids; 2013 Apr; 77():76-96. PubMed ID: 23833331 [TBL] [Abstract][Full Text] [Related]
2. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries. Ge L; Sotiropoulos F J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533 [TBL] [Abstract][Full Text] [Related]
3. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies. Borazjani I; Ge L; Sotiropoulos F J Comput Phys; 2008 Aug; 227(16):7587-7620. PubMed ID: 20981246 [TBL] [Abstract][Full Text] [Related]
4. A Newton-Krylov method with an approximate analytical Jacobian for implicit solution of Navier-Stokes equations on staggered overset-curvilinear grids with immersed boundaries. Asgharzadeh H; Borazjani I J Comput Phys; 2017 Feb; 331():227-256. PubMed ID: 28042172 [TBL] [Abstract][Full Text] [Related]
5. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES. Mittal R; Dong H; Bozkurttas M; Najjar FM; Vargas A; von Loebbecke A J Comput Phys; 2008; 227(10):4825-4852. PubMed ID: 20216919 [TBL] [Abstract][Full Text] [Related]
12. A parallel methodology of adaptive Cartesian grid for compressible flow simulations. Qi X; Yang Y; Tian L; Wang Z; Zhao N Adv Aerodyn; 2022; 4(1):21. PubMed ID: 38625243 [TBL] [Abstract][Full Text] [Related]
13. Mathematical and Numerical Modeling of Turbulent Flows. Vedovoto JM; Serfaty R; Da Silveira Neto A An Acad Bras Cienc; 2015; 87(2):1195-232. PubMed ID: 26131642 [TBL] [Abstract][Full Text] [Related]
14. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model. Gilmanov A; Stolarski H; Sotiropoulos F J Biomech Eng; 2018 Apr; 140(4):. PubMed ID: 29305610 [TBL] [Abstract][Full Text] [Related]
15. Simulation of intracranial hemodynamics by an efficient and accurate immersed boundary scheme. Lampropoulos DS; Bourantas GC; Zwick BF; Kagadis GC; Wittek A; Miller K; Loukopoulos VC Int J Numer Method Biomed Eng; 2021 Dec; 37(12):e3524. PubMed ID: 34448366 [TBL] [Abstract][Full Text] [Related]
16. Hybrid finite difference/finite element immersed boundary method. Griffith BE; Luo X Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587 [TBL] [Abstract][Full Text] [Related]
17. Computational approach for probing the flow through artificial heart devices. Kiris C; Kwak D; Rogers S; Chang ID J Biomech Eng; 1997 Nov; 119(4):452-60. PubMed ID: 9407285 [TBL] [Abstract][Full Text] [Related]
18. Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems. Kumar M; Natarajan G Phys Rev E; 2019 May; 99(5-1):053304. PubMed ID: 31212515 [TBL] [Abstract][Full Text] [Related]
19. A Variational Multiscale method with immersed boundary conditions for incompressible flows. Kang S; Masud A Meccanica; 2021 Jun; 56(6):1397-1422. PubMed ID: 37655308 [TBL] [Abstract][Full Text] [Related]
20. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation. Luo H; Mittal R; Zheng X; Bielamowicz SA; Walsh RJ; Hahn JK J Comput Phys; 2008 Nov; 227(22):9303-9332. PubMed ID: 19936017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]