These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 23833901)
21. Field trials with tank mixtures of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus formulations against Culex pipiens larvae in septic tanks in Antalya, Turkey. Cetin H; Dechant P; Yanikoglu A J Am Mosq Control Assoc; 2007 Jun; 23(2):161-5. PubMed ID: 17847848 [TBL] [Abstract][Full Text] [Related]
22. An Operational Evaluation of 3 Methoprene Larvicide Formulations for Use Against Mosquitoes in Catch Basins. Harbison JE; Runde AB; Henry M; Hulsebosch B; Meresh A; Johnson H; Nasci RS Environ Health Insights; 2018; 12():1178630218760539. PubMed ID: 29497309 [TBL] [Abstract][Full Text] [Related]
23. Laboratory tests on the efficacy of VBC60035, a combined larvicidal formulation of Bacillus thuringiensis israelensis (strain AM65-52) and Bacillus sphaericus (strain 2362) against Aedes albopictus in simulated catch basins. Eritja R J Am Mosq Control Assoc; 2013 Sep; 29(3):280-3. PubMed ID: 24199503 [TBL] [Abstract][Full Text] [Related]
24. Field trials with methoprene, temephos, and Bacillus thuringiensis serovar israelensis for the control of larval Culiseta melanura. Woodrow RJ; Howard JJ; White DJ J Am Mosq Control Assoc; 1995 Dec; 11(4):424-7. PubMed ID: 8825501 [TBL] [Abstract][Full Text] [Related]
25. Larviciding Culex spp. (Diptera: Culicidae) Populations in Catch Basins and Its Impact on West Nile Virus Transmission in Urban Parks in Atlanta, GA. McMillan JR; Blakney RA; Mead DG; Coker SM; Morran LT; Waller LA; Kitron U; Vazquez-Prokopec GM J Med Entomol; 2019 Jan; 56(1):222-232. PubMed ID: 30295776 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of three microbial formulations against Culex pipiens pipiens larvae in irrigation fields in Wroclaw, Poland. Rydzanicz K; Lonc E; Kiewra D; Dechant P; Krause S; Becker N J Am Mosq Control Assoc; 2009 Jun; 25(2):140-8. PubMed ID: 19653495 [TBL] [Abstract][Full Text] [Related]
27. Susceptibility of the leaf-eating beetle, Galerucella calmariensis, a biological control agent for purple loosestrife (Lythrum salcaria), to three mosquito control larvicides. Lowe TP; Hershberger TD Environ Toxicol Chem; 2004 Jul; 23(7):1662-71. PubMed ID: 15230319 [TBL] [Abstract][Full Text] [Related]
28. Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: systematic literature review. Boyce R; Lenhart A; Kroeger A; Velayudhan R; Roberts B; Horstick O Trop Med Int Health; 2013 May; 18(5):564-77. PubMed ID: 23527785 [TBL] [Abstract][Full Text] [Related]
29. Field efficacy and nontarget effects of the mosquito larvicides temephos, methoprene, and Bacillus thuringiensis var. israelensis in Florida mangrove swamps. Lawler SP; Jensen T; Dritz DA; Wichterman G J Am Mosq Control Assoc; 1999 Dec; 15(4):446-52. PubMed ID: 10612606 [TBL] [Abstract][Full Text] [Related]
30. Integrated management of waste tire mosquitoes utilizing Mesocyclops longisetus (Copepoda: Cyclopidae), Bacillus thuringiensis var. israelensis, Bacillus sphaericus, and methoprene. Tietze NS; Hester PG; Shaffer KR; Prescott SJ; Schreiber ET J Am Mosq Control Assoc; 1994 Sep; 10(3):363-73. PubMed ID: 7807078 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of nontarget effects of methoprene applied to catch basins for mosquito control. Butler M; Ginsberg HS; Lebrun RA; Gettman A J Vector Ecol; 2010 Dec; 35(2):372-84. PubMed ID: 21175945 [TBL] [Abstract][Full Text] [Related]
32. Developing recombinant bacteria for control of mosquito larvae. Federici BA; Park HW; Bideshi DK; Wirth MC; Johnson JJ; Sakano Y; Tang M J Am Mosq Control Assoc; 2007; 23(2 Suppl):164-75. PubMed ID: 17853605 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of various control agents against mosquito larvae in rice paddies in Taiwan. Teng HJ; Lu LC; Wu YL; Fang JG J Vector Ecol; 2005 Jun; 30(1):126-32. PubMed ID: 16007966 [TBL] [Abstract][Full Text] [Related]
34. Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control. Lawler SP Ecotoxicol Environ Saf; 2017 May; 139():335-343. PubMed ID: 28187397 [TBL] [Abstract][Full Text] [Related]
35. Taming a tiger in the city: comparison of motorized backpack applications and source reduction against the Asian tiger mosquito, Aedes albopictus. Sun D; Williges E; Unlu I; Healy S; Williams GM; Obenauer P; Hughes T; Schoeler G; Gaugler R; Fonseca D; Farajollahi A J Am Mosq Control Assoc; 2014 Jun; 30(2):99-105. PubMed ID: 25102592 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of Bacillus sphaericus against Mansonia dyari larvae in phosphate lakes in Polk County, Florida. Floore T; Wardz R J Am Mosq Control Assoc; 2009 Sep; 25(3):310-4. PubMed ID: 19852221 [TBL] [Abstract][Full Text] [Related]
37. Efficacy of Bacillus thuringiensis israelensis, VectoBac WG and DT, formulations against dengue mosquito vectors in cement potable water jars in Cambodia. Setha T; Chantha N; Socheat D Southeast Asian J Trop Med Public Health; 2007 Mar; 38(2):261-8. PubMed ID: 17539275 [TBL] [Abstract][Full Text] [Related]
38. Insecticide resistance in Culex pipiens from New York. Paul A; Harrington LC; Zhang L; Scott JG J Am Mosq Control Assoc; 2005 Sep; 21(3):305-9. PubMed ID: 16252522 [TBL] [Abstract][Full Text] [Related]
39. Control of arbovirus vector Verrallina funerea (Diptera: Culicidae) in southeast Queensland, Australia. Jeffery JA; Kay BH; Ryan PA J Econ Entomol; 2007 Oct; 100(5):1512-8. PubMed ID: 17972627 [TBL] [Abstract][Full Text] [Related]
40. Flocculation of Bacillus thuringiensis var. israelensis suspension and its efficacy against mosquito larvae. Szepesszentgyörgyi A; Bárány S; Mécs I Acta Biol Hung; 2005; 56(1-2):151-64. PubMed ID: 15813223 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]