These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 2383399)
1. Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study. O'Rourke NA; Fraser SE Neuron; 1990 Aug; 5(2):159-71. PubMed ID: 2383399 [TBL] [Abstract][Full Text] [Related]
2. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. Nakamura H; O'Leary DD J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055 [TBL] [Abstract][Full Text] [Related]
4. Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole-mount study. Stuermer CA J Comp Neurol; 1984 Oct; 229(2):214-32. PubMed ID: 6501601 [TBL] [Abstract][Full Text] [Related]
5. Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission. O'Rourke NA; Cline HT; Fraser SE Neuron; 1994 Apr; 12(4):921-34. PubMed ID: 8161460 [TBL] [Abstract][Full Text] [Related]
6. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101 [TBL] [Abstract][Full Text] [Related]
7. Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations. Sakaguchi DS; Murphey RK J Neurosci; 1985 Dec; 5(12):3228-45. PubMed ID: 3001241 [TBL] [Abstract][Full Text] [Related]
8. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target. Santos RA; Del Rio R; Alvarez AD; Romero G; Vo BZ; Cohen-Cory S Neural Dev; 2022 Apr; 17(1):5. PubMed ID: 35422013 [TBL] [Abstract][Full Text] [Related]
9. Fine retinotopic organization of optic terminal arbors in the tectum of normal goldfish. Wang Z; Meyer RL Vis Neurosci; 2000; 17(5):723-35. PubMed ID: 11153652 [TBL] [Abstract][Full Text] [Related]
10. Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. Stuermer CA J Neurosci; 1988 Dec; 8(12):4513-30. PubMed ID: 2848935 [TBL] [Abstract][Full Text] [Related]
11. Mode of growth of retinal axons within the tectum of Xenopus tadpoles, and implications in the ordered neuronal connection between the retina and the tectum. Fujisawa H J Comp Neurol; 1987 Jun; 260(1):127-39. PubMed ID: 3597831 [TBL] [Abstract][Full Text] [Related]
12. Development of topographic order in the mammalian retinocollicular projection. Simon DK; O'Leary DD J Neurosci; 1992 Apr; 12(4):1212-32. PubMed ID: 1313491 [TBL] [Abstract][Full Text] [Related]
13. Changes in retinal arbors in compressed projections to half tecta in goldfish. Schmidt J; Coen T J Neurobiol; 1995 Dec; 28(4):409-18. PubMed ID: 8592102 [TBL] [Abstract][Full Text] [Related]
14. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors. Schmidt JT; Turcotte JC; Buzzard M; Tieman DG J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728 [TBL] [Abstract][Full Text] [Related]
15. N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo. Jin T; Peng G; Wu E; Mendiratta S; Elul T Brain Res; 2018 Oct; 1697():34-44. PubMed ID: 29856981 [TBL] [Abstract][Full Text] [Related]
16. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade. Hartlieb E; Stuermer CA J Comp Neurol; 1989 Jun; 284(1):148-68. PubMed ID: 2754029 [TBL] [Abstract][Full Text] [Related]
17. N- and C-terminal domains of beta-catenin, respectively, are required to initiate and shape axon arbors of retinal ganglion cells in vivo. Elul TM; Kimes NE; Kohwi M; Reichardt LF J Neurosci; 2003 Jul; 23(16):6567-75. PubMed ID: 12878698 [TBL] [Abstract][Full Text] [Related]
18. Retinotopic order in the absence of axon competition. Gosse NJ; Nevin LM; Baier H Nature; 2008 Apr; 452(7189):892-5. PubMed ID: 18368050 [TBL] [Abstract][Full Text] [Related]
19. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. Schmidt JT; Buzzard M J Neurobiol; 1993 Mar; 24(3):384-99. PubMed ID: 7684064 [TBL] [Abstract][Full Text] [Related]
20. Anatomical mapping of retino-tectal connections in developing and metamorphosed Xenopus: evidence for changing connections. Longley A J Embryol Exp Morphol; 1978 Jun; 45():249-70. PubMed ID: 670862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]