BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23834054)

  • 41. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice.
    Penhoat A; Fayard L; Stefanutti A; Mithieux G; Rajas F
    Metabolism; 2014 Jan; 63(1):104-11. PubMed ID: 24135501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.
    Liu TY; Shi CX; Gao R; Sun HJ; Xiong XQ; Ding L; Chen Q; Li YH; Wang JJ; Kang YM; Zhu GQ
    Clin Sci (Lond); 2015 Nov; 129(10):839-50. PubMed ID: 26201094
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid-dependent control of hepatic glycogen stores in healthy humans.
    Stingl H; Krssák M; Krebs M; Bischof MG; Nowotny P; Fürnsinn C; Shulman GI; Waldhäusl W; Roden M
    Diabetologia; 2001 Jan; 44(1):48-54. PubMed ID: 11206411
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production.
    Wang PY; Caspi L; Lam CK; Chari M; Li X; Light PE; Gutierrez-Juarez R; Ang M; Schwartz GJ; Lam TK
    Nature; 2008 Apr; 452(7190):1012-6. PubMed ID: 18401341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of hepatic glycogen content on hepatic insulin action in humans: alteration in the relative contributions of glycogenolysis and gluconeogenesis to endogenous glucose production.
    Wise S; Nielsen M; Rizza R
    J Clin Endocrinol Metab; 1997 Jun; 82(6):1828-33. PubMed ID: 9177391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis.
    Gastaldelli A; Miyazaki Y; Pettiti M; Buzzigoli E; Mahankali S; Ferrannini E; DeFronzo RA
    J Clin Endocrinol Metab; 2004 Aug; 89(8):3914-21. PubMed ID: 15292327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acute effect of leptin on hepatic glycogenolysis and gluconeogenesis in perfused rat liver.
    Nemecz M; Preininger K; Englisch R; Fürnsinn C; Schneider B; Waldhäusl W; Roden M
    Hepatology; 1999 Jan; 29(1):166-72. PubMed ID: 9862863
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gut-Brain Glucose Signaling in Energy Homeostasis.
    Soty M; Gautier-Stein A; Rajas F; Mithieux G
    Cell Metab; 2017 Jun; 25(6):1231-1242. PubMed ID: 28591631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metformin acts as a dual glucose regulator in mouse brain.
    Jin BY; Kim HJ; Oh MJ; Ha NH; Jeong YT; Choi SH; Lee JS; Kim NH; Kim DH
    Front Pharmacol; 2023; 14():1108660. PubMed ID: 37153803
    [No Abstract]   [Full Text] [Related]  

  • 50. Intestinal gluconeogenesis: metabolic benefits make sense in the light of evolution.
    Gautier-Stein A; Mithieux G
    Nat Rev Gastroenterol Hepatol; 2023 Mar; 20(3):183-194. PubMed ID: 36470967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms Underlying Type 2 Diabetes Remission After Metabolic Surgery.
    Pérez-Pevida B; Escalada J; Miras AD; Frühbeck G
    Front Endocrinol (Lausanne); 2019; 10():641. PubMed ID: 31608010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Does the integrated level of all plasma nutrients control daily food intake?
    Koopmans HS; Walls EK; Willing AE
    Brain Res Bull; 1991; 27(3-4):429-34. PubMed ID: 1959041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of the liver in the metabolic control of eating: what we know--and what we do not know.
    Langhans W
    Neurosci Biobehav Rev; 1996; 20(1):145-53. PubMed ID: 8622821
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases.
    Matsubara Y; Kiyohara H; Teratani T; Mikami Y; Kanai T
    Neuropharmacology; 2022 Mar; 205():108915. PubMed ID: 34919906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Peripheral Pathways in the Food-Intake Control towards the Adipose-Intestinal Missing Link.
    Mendieta Zerón H; Domínguez García MV; Camarillo Romero Mdel S; Flores-Merino MV
    Int J Endocrinol; 2013; 2013():598203. PubMed ID: 24381591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intestinal gluconeogenesis prevents hepatic steatosis.
    Dickson I
    Nat Rev Gastroenterol Hepatol; 2020 Jun; 17(6):316. PubMed ID: 32269328
    [No Abstract]   [Full Text] [Related]  

  • 57. Intestinal gluconeogenesis: A translator of nutritional information needed for glycemic and emotional balance.
    Gautier-Stein A; Vily-Petit J; Rajas F; Mithieux G
    Biochimie; 2023 Nov; ():. PubMed ID: 38040189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integrated metabolic control of food intake.
    Friedman MI
    Appetite; 1992 Jun; 18(3):243. PubMed ID: 1510466
    [No Abstract]   [Full Text] [Related]  

  • 59. Sodium-glucose co-transporter 1 (SGLT1) differentially regulates gluconeogenesis and GLP-1 receptor (GLP-1R) expression in different diabetic rats: a preliminary validation of the hypothesis of "SGLT1 bridge" as an indication for "surgical diabetes".
    Zhu H; Cai H; Wang X; Chen T; Zhen C; Zhang Z; Ruan X; Li G
    Ann Transl Med; 2022 Apr; 10(8):481. PubMed ID: 35571394
    [TBL] [Abstract][Full Text] [Related]  

  • 60. γ-PGA-Rich Chungkookjang, Short-Term Fermented Soybeans: Prevents Memory Impairment by Modulating Brain Insulin Sensitivity, Neuro-Inflammation, and the Gut-Microbiome-Brain Axis.
    Jeong DY; Ryu MS; Yang HJ; Park S
    Foods; 2021 Jan; 10(2):. PubMed ID: 33494481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.