These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23834059)

  • 1. Material resources, energy, and nutrient recovery from waste: are waste refineries the solution for the future?
    Tonini D; Martinez-Sanchez V; Astrup TF
    Environ Sci Technol; 2013 Aug; 47(15):8962-9. PubMed ID: 23834059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland.
    Boesch ME; Vadenbo C; Saner D; Huter C; Hellweg S
    Waste Manag; 2014 Feb; 34(2):378-89. PubMed ID: 24315553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global warming factors modelled for 40 generic municipal waste management scenarios.
    Christensen TH; Simion F; Tonini D; Møller J
    Waste Manag Res; 2009 Nov; 27(9):871-84. PubMed ID: 19837711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.
    Montejo C; Tonini D; Márquez Mdel C; Astrup TF
    J Environ Manage; 2013 Oct; 128():661-73. PubMed ID: 23850761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life-cycle assessment of selected management options for air pollution control residues from waste incineration.
    Fruergaard T; Hyks J; Astrup T
    Sci Total Environ; 2010 Sep; 408(20):4672-80. PubMed ID: 20599249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models.
    Turconi R; Butera S; Boldrin A; Grosso M; Rigamonti L; Astrup T
    Waste Manag Res; 2011 Oct; 29(10 Suppl):78-90. PubMed ID: 21930527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste.
    Manfredi S; Tonini D; Christensen TH
    Waste Manag; 2010 Mar; 30(3):433-40. PubMed ID: 19854039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessment of bagasse waste management options.
    Kiatkittipong W; Wongsuchoto P; Pavasant P
    Waste Manag; 2009 May; 29(5):1628-33. PubMed ID: 19136243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.
    Merrild H; Larsen AW; Christensen TH
    Waste Manag; 2012 May; 32(5):1009-18. PubMed ID: 22265239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.
    Birgisdóttir H; Bhander G; Hauschild MZ; Christensen TH
    Waste Manag; 2007; 27(8):S75-84. PubMed ID: 17416511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration.
    Damgaard A; Riber C; Fruergaard T; Hulgaard T; Christensen TH
    Waste Manag; 2010 Jul; 30(7):1244-50. PubMed ID: 20378326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.
    Manfredi S; Christensen TH
    Waste Manag; 2009 Jan; 29(1):32-43. PubMed ID: 18445517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.
    Wang L; Templer R; Murphy RJ
    Bioresour Technol; 2012 Sep; 120():89-98. PubMed ID: 22784958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projecting the environmental profile of Singapore's landfill activities: Comparisons of present and future scenarios based on LCA.
    Khoo HH; Tan LL; Tan RB
    Waste Manag; 2012 May; 32(5):890-900. PubMed ID: 22257698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy.
    Cherubini F; Bargigli S; Ulgiati S
    Waste Manag; 2008 Dec; 28(12):2552-64. PubMed ID: 18230413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of the waste hierarchy--a Danish case study on waste paper.
    Schmidt JH; Holm P; Merrild A; Christensen P
    Waste Manag; 2007; 27(11):1519-30. PubMed ID: 17112716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling.
    Andersen JK; Boldrin A; Christensen TH; Scheutz C
    Waste Manag; 2012 Jan; 32(1):31-40. PubMed ID: 21975300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.