BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23834287)

  • 1. A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism.
    Goyer A; Hasnain G; Frelin O; Ralat MA; Gregory JF; Hanson AD
    Biochem J; 2013 Sep; 454(3):533-42. PubMed ID: 23834287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.
    Bettendorff L; Wins P
    FEBS J; 2009 Jun; 276(11):2917-25. PubMed ID: 19490098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.
    Nosaka K
    Biochim Biophys Acta; 1990 Feb; 1037(2):147-54. PubMed ID: 2407294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis TH2 Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase.
    Mimura M; Zallot R; Niehaus TD; Hasnain G; Gidda SK; Nguyen TN; Anderson EM; Mullen RT; Brown G; Yakunin AF; de Crécy-Lagard V; Gregory JF; McCarty DR; Hanson AD
    Plant Cell; 2016 Oct; 28(10):2683-2696. PubMed ID: 27677881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schizosaccharomyces pombe thiamine pyrophosphokinase is encoded by gene tnr3 and is a regulator of thiamine metabolism, phosphate metabolism, mating, and growth.
    Fankhauser H; Zurlinden A; Schweingruber AM; Edenharter E; Schweingruber ME
    J Biol Chem; 1995 Nov; 270(47):28457-62. PubMed ID: 7499352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize.
    Frelin O; Agrimi G; Laera VL; Castegna A; Richardson LG; Mullen RT; Lerma-Ortiz C; Palmieri F; Hanson AD
    Funct Integr Genomics; 2012 Jun; 12(2):317-26. PubMed ID: 22426856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis.
    Hasnain G; Roje S; Sa N; Zallot R; Ziemak MJ; de Crécy-Lagard V; Gregory JF; Hanson AD
    Biochem J; 2016 Jan; 473(2):157-66. PubMed ID: 26537753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation.
    Hohmann S; Meacock PA
    Biochim Biophys Acta; 1998 Jun; 1385(2):201-19. PubMed ID: 9655908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.
    Kowalska E; Kozik A
    Cell Mol Biol Lett; 2008; 13(2):271-82. PubMed ID: 18161008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B
    Hsieh WY; Liao JC; Wang HT; Hung TH; Tseng CC; Chung TY; Hsieh MH
    Plant J; 2017 Jul; 91(1):145-157. PubMed ID: 28346710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae.
    Nosaka K; Onozuka M; Konno H; Kawasaki Y; Nishimura H; Sano M; Akaji K
    Mol Microbiol; 2005 Oct; 58(2):467-79. PubMed ID: 16194233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of thiaminase II encoded by the THI20 gene in thiamin salvage of Saccharomyces cerevisiae.
    Onozuka M; Konno H; Kawasaki Y; Akaji K; Nosaka K
    FEMS Yeast Res; 2008 Mar; 8(2):266-75. PubMed ID: 18028398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.
    Bunik VI; Tylicki A; Lukashev NV
    FEBS J; 2013 Dec; 280(24):6412-42. PubMed ID: 24004353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of thiamin and its phosphoric esters in different regions of the nervous system: a new approach.
    Rindi G
    Acta Vitaminol Enzymol; 1982; 4(1-2):59-68. PubMed ID: 7124568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis and synthesis of thiamin triphosphate in bacteria.
    Nishimune T; Hayashi R
    J Nutr Sci Vitaminol (Tokyo); 1987 Apr; 33(2):113-27. PubMed ID: 3039089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize.
    Yazdani M; Zallot R; Tunc-Ozdemir M; de Crécy-Lagard V; Shintani DK; Hanson AD
    Phytochemistry; 2013 Oct; 94():68-73. PubMed ID: 23816351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Oxo-3-alkynoic acids, universal mechanism-based inactivators of thiamin diphosphate-dependent decarboxylases: synthesis and evidence for potent inactivation of the pyruvate dehydrogenase multienzyme complex.
    Brown A; Nemeria N; Yi J; Zhang D; Jordan WB; Machado RS; Guest JR; Jordan F
    Biochemistry; 1997 Jul; 36(26):8071-81. PubMed ID: 9201955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches.
    Agyei-Owusu K; Leeper FJ
    FEBS J; 2009 Jun; 276(11):2905-16. PubMed ID: 19490097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis.
    Mkrtchyan G; Aleshin V; Parkhomenko Y; Kaehne T; Di Salvo ML; Parroni A; Contestabile R; Vovk A; Bettendorff L; Bunik V
    Sci Rep; 2015 Jul; 5():12583. PubMed ID: 26212886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.