These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23834287)

  • 21. Thiamin deficiency in the lamb: changes in thiamin phosphate esters in the brain.
    Thornber EJ; Dunlop RH; Gawthorne JM
    J Neurochem; 1980 Sep; 35(3):713-7. PubMed ID: 7452281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thiamin biosynthesis in eukaryotes: characterization of the enzyme-bound product of thiazole synthase from Saccharomyces cerevisiae and its implications in thiazole biosynthesis.
    Chatterjee A; Jurgenson CT; Schroeder FC; Ealick SE; Begley TP
    J Am Chem Soc; 2006 Jun; 128(22):7158-9. PubMed ID: 16734458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate specificity in thiamin diphosphate-dependent decarboxylases.
    Andrews FH; McLeish MJ
    Bioorg Chem; 2012 Aug; 43():26-36. PubMed ID: 22245019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiamin Metabolism in the rat during long-term alcohol administration. 1. Communication: ethanol induced changes at optimal thiamin supply.
    Bitsch R; Hansen J; Hötzel D
    Int J Vitam Nutr Res; 1982; 52(2):126-33. PubMed ID: 6890048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dominant resistance to oxythiamin in Saccharomyces cerevisiae and its mapping.
    Ruml T; Silhánková L
    Folia Microbiol (Praha); 1990; 35(2):168-71. PubMed ID: 2199352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of oxythiamin on growth rate, survival ability and pyruvate decarboxylase activity in Saccharomyces cerevisiae.
    Tylicki A; Łempicka A; Romaniuk-Demonchaux K; Czerniecki J; Dobrzyń P; Strumiło S
    J Basic Microbiol; 2003; 43(6):522-9. PubMed ID: 14625902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modification of thiamine pyrophosphate dependent enzyme activity by oxythiamine in Saccharomyces cerevisiae cells.
    Tylicki A; Czerniecki J; Dobrzyn P; Matanowska A; Olechno A; Strumilo S
    Can J Microbiol; 2005 Oct; 51(10):833-9. PubMed ID: 16333342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Metabolism of vitamin B1 and its di- and triphosphate esters in experimental allergic encephalomyelitis].
    Gritsenko EA; Chernikevich IP; Gordeev IaIa; Moroz AR; Trebukhina RV
    Ukr Biokhim Zh (1978); 1993; 65(3):84-94. PubMed ID: 8291147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The irreversibility of thiamin transport in Saccharomyces cerevisiae.
    Ruml T; Silhánková L; Rauch P
    Folia Microbiol (Praha); 1988; 33(5):372-6. PubMed ID: 3060416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and sequencing of Schizosaccharomyces pombe car1 gene encoding arginase. Expression of the arginine anabolic and catabolic genes in response to arginine and related metabolites.
    Van Huffel C; Dubois E; Messenguy F
    Yeast; 1994 Jul; 10(7):923-33. PubMed ID: 7985419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Isolation and basic properties of thiamine pyrophosphokinase from brewing yeast].
    Voskoboev AI; Chernikevich IP; Ostrovsky YM
    Prikl Biokhim Mikrobiol; 1975; 11(2):230-6. PubMed ID: 1724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis.
    Hsieh WY; Wang HM; Chung YH; Lee KT; Liao HS; Hsieh MH
    Plant J; 2022 Sep; 111(5):1383-1396. PubMed ID: 35791282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 5-formyltetrahydrofolate cycloligase paralog from all domains of life: comparative genomic and experimental evidence for a cryptic role in thiamin metabolism.
    Pribat A; Blaby IK; Lara-Núñez A; Jeanguenin L; Fouquet R; Frelin O; Gregory JF; Philmus B; Begley TP; de Crécy-Lagard V; Hanson AD
    Funct Integr Genomics; 2011 Sep; 11(3):467-78. PubMed ID: 21538139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of the coenzyme and formation of the transketolase active center.
    Kochetov G; Sevostyanova IA
    IUBMB Life; 2005 Jul; 57(7):491-7. PubMed ID: 16081370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of hydroxymethylpyrimidine pyrophosphate in Saccharomyces cerevisiae.
    Kawasaki Y; Onozuka M; Mizote T; Nosaka K
    Curr Genet; 2005 Mar; 47(3):156-62. PubMed ID: 15614489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis.
    Bocobza SE; Malitsky S; Araújo WL; Nunes-Nesi A; Meir S; Shapira M; Fernie AR; Aharoni A
    Plant Cell; 2013 Jan; 25(1):288-307. PubMed ID: 23341335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Posttranslational activation, site-directed mutation and phylogenetic analyses of the lysine biosynthesis enzymes alpha-aminoadipate reductase Lys1p (AAR) and the phosphopantetheinyl transferase Lys7p (PPTase) from Schizosaccharomyces pombe.
    Guo S; Bhattacharjee JK
    Yeast; 2004 Nov; 21(15):1279-88. PubMed ID: 15546125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates.
    Schütz A; Golbik R; König S; Hübner G; Tittmann K
    Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biosynthesis of thiamin thiazole in eukaryotes: conversion of NAD to an advanced intermediate.
    Chatterjee A; Jurgenson CT; Schroeder FC; Ealick SE; Begley TP
    J Am Chem Soc; 2007 Mar; 129(10):2914-22. PubMed ID: 17309261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.