BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23834366)

  • 1. Phylogeny and evolutionary history of glycogen synthase kinase 3/SHAGGY-like kinase genes in land plants.
    Qi X; Chanderbali AS; Wong GK; Soltis DE; Soltis PS
    BMC Evol Biol; 2013 Jul; 13():143. PubMed ID: 23834366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants.
    Yoo MJ; Albert VA; Soltis PS; Soltis DE
    BMC Plant Biol; 2006 Feb; 6():3. PubMed ID: 16504046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization and expression of the GSK3/shaggy kinase gene family in the moss Physcomitrella patens suggest early gene multiplication in land plants and an ancestral response to osmotic stress.
    Richard O; Paquet N; Haudecoeur E; Charrier B
    J Mol Evol; 2005 Jul; 61(1):99-113. PubMed ID: 16007489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the class IV HD-zip gene family in streptophytes.
    Zalewski CS; Floyd SK; Furumizu C; Sakakibara K; Stevenson DW; Bowman JL
    Mol Biol Evol; 2013 Oct; 30(10):2347-65. PubMed ID: 23894141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of two wheat Glycogen Synthase Kinase 3/ SHAGGY-like kinases.
    Bittner T; Campagne S; Neuhaus G; Rensing SA; Fischer-Iglesias C
    BMC Plant Biol; 2013 Apr; 13():64. PubMed ID: 23594413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function and evolution of 'green' GSK3/Shaggy-like kinases.
    Saidi Y; Hearn TJ; Coates JC
    Trends Plant Sci; 2012 Jan; 17(1):39-46. PubMed ID: 22051150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants.
    Zhao J; Favero DS; Qiu J; Roalson EH; Neff MM
    BMC Plant Biol; 2014 Oct; 14():266. PubMed ID: 25311531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of functional complexity within the β-amylase gene family in land plants.
    Thalmann M; Coiro M; Meier T; Wicker T; Zeeman SC; Santelia D
    BMC Evol Biol; 2019 Feb; 19(1):66. PubMed ID: 30819112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants.
    Liu D; Sun W; Yuan Y; Zhang N; Hayward A; Liu Y; Wang Y
    Ann Bot; 2014 Jun; 113(7):1219-33. PubMed ID: 24812252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress.
    Wang L; Yang Z; Zhang B; Yu D; Liu J; Gong Q; Qanmber G; Li Y; Lu L; Lin Y; Yang Z; Li F
    BMC Plant Biol; 2018 Dec; 18(1):330. PubMed ID: 30514299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and divergence of SBP-box genes in land plants.
    Zhang SD; Ling LZ; Yi TS
    BMC Genomics; 2015 Oct; 16():787. PubMed ID: 26467431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex origin, evolution, and diversification of non-canonically organized OVATE-OFP and OVATE-Like OFP gene pair across Embryophyta.
    Chahar N; Dangwal M; Das S
    Gene; 2023 Oct; 883():147685. PubMed ID: 37536399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms.
    Nardmann J; Reisewitz P; Werr W
    Mol Biol Evol; 2009 Aug; 26(8):1745-55. PubMed ID: 19387013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.
    Gramzow L; Weilandt L; Theißen G
    Ann Bot; 2014 Nov; 114(7):1407-29. PubMed ID: 24854168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation and diversification of HAIRY MERISTEM gene family in land plants.
    Geng Y; Guo L; Han H; Liu X; Banks JA; Wisecaver JH; Zhou Y
    Plant J; 2021 Apr; 106(2):366-378. PubMed ID: 33484592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution.
    Liu YY; Yang KZ; Wei XX; Wang XQ
    New Phytol; 2016 Nov; 212(3):730-744. PubMed ID: 27375201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal ancestor of land plants was preadapted for symbiosis.
    Delaux PM; Radhakrishnan GV; Jayaraman D; Cheema J; Malbreil M; Volkening JD; Sekimoto H; Nishiyama T; Melkonian M; Pokorny L; Rothfels CJ; Sederoff HW; Stevenson DW; Surek B; Zhang Y; Sussman MR; Dunand C; Morris RJ; Roux C; Wong GK; Oldroyd GE; Ané JM
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13390-5. PubMed ID: 26438870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.
    Yerramsetty P; Stata M; Siford R; Sage TL; Sage RF; Wong GK; Albert VA; Berry JO
    BMC Evol Biol; 2016 Jun; 16(1):141. PubMed ID: 27356975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and diversification of ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3) genes in land plants and phylogenetic evidence that the ancestral CER1/3 gene resulted from the fusion of pre-existing domains.
    Chaudhary K; Geeta R; Panjabi P
    Mol Phylogenet Evol; 2021 Jun; 159():107101. PubMed ID: 33592235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of oleosin in land plants.
    Fang Y; Zhu RL; Mishler BD
    PLoS One; 2014; 9(8):e103806. PubMed ID: 25105766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.