BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23834473)

  • 21. Gene and primary structures of dye-linked L-proline dehydrogenase from the hyperthermophilic archaeon Thermococcus profundus show the presence of a novel heterotetrameric amino acid dehydrogenase complex.
    Kawakami R; Sakuraba H; Ohshima T
    Extremophiles; 2004 Apr; 8(2):99-108. PubMed ID: 15064976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
    Baban BA; Vinod MP; Tanner JJ; Becker DF
    Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis.
    Fonseca IO; Silva RG; Fernandes CL; de Souza ON; Basso LA; Santos DS
    Arch Biochem Biophys; 2007 Jan; 457(2):123-33. PubMed ID: 17178095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate.
    Ostrander EL; Larson JD; Schuermann JP; Tanner JJ
    Biochemistry; 2009 Feb; 48(5):951-9. PubMed ID: 19140736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
    Korasick DA; Christgen SL; Qureshi IA; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2021 Nov; 712():109025. PubMed ID: 34506758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal nitric oxide synthase: substrate and solvent kinetic isotope effects on the steady-state kinetic parameters for the reduction of 2,6-dichloroindophenol and cytochrome c(3+).
    Wolthers KR; Schimerlik MI
    Biochemistry; 2002 Jan; 41(1):196-204. PubMed ID: 11772017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
    Patel MP; Blanchard JS
    Biochemistry; 2001 May; 40(17):5119-26. PubMed ID: 11318633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum.
    Straub PF; Reynolds PH; Althomsons S; Mett V; Zhu Y; Shearer G; Kohl DH
    Appl Environ Microbiol; 1996 Jan; 62(1):221-9. PubMed ID: 8572700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical Mechanism of the Branched-Chain Aminotransferase IlvE from Mycobacterium tuberculosis.
    Amorim Franco TM; Hegde S; Blanchard JS
    Biochemistry; 2016 Nov; 55(45):6295-6303. PubMed ID: 27780341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic and mechanistic characterization of the glyceraldehyde 3-phosphate dehydrogenase from Mycobacterium tuberculosis.
    Wolfson-Stofko B; Hadi T; Blanchard JS
    Arch Biochem Biophys; 2013 Dec; 540(1-2):53-61. PubMed ID: 24161676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
    Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A
    J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms.
    Silva RG; de Carvalho LP; Blanchard JS; Santos DS; Basso LA
    Biochemistry; 2006 Oct; 45(43):13064-73. PubMed ID: 17059223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic and chemical mechanism of the dihydrofolate reductase from Mycobacterium tuberculosis.
    Czekster CM; Vandemeulebroucke A; Blanchard JS
    Biochemistry; 2011 Jan; 50(3):367-75. PubMed ID: 21138249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase.
    Patel MP; Blanchard JS
    Biochemistry; 1999 Sep; 38(36):11827-33. PubMed ID: 10512639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. L-Mandelate dehydrogenase from Rhodotorula graminis: cloning, sequencing and kinetic characterization of the recombinant enzyme and its independently expressed flavin domain.
    Illias RM; Sinclair R; Robertson D; Neu A; Chapman SK; Reid GA
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):107-15. PubMed ID: 9639569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
    Bogner AN; Ji J; Tanner JJ
    Protein Eng Des Sel; 2022 Feb; 35():. PubMed ID: 36448708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.