These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2383453)

  • 1. Bone formation in porous implants of delrin and commercially pure titanium.
    Buch F; Albrektsson T
    Arch Orthop Trauma Surg; 1990; 109(4):227-30. PubMed ID: 2383453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of direct currents on bone growth into delrin implants.
    Buch F; Albrektsson T; Herbst E
    Scand J Plast Reconstr Surg; 1985; 19(3):223-30. PubMed ID: 4095507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of polyoxymethylene (Delrin) in bone.
    Ohlin A; Linder L
    Biomaterials; 1993; 14(4):285-9. PubMed ID: 8476998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of disodium (1-hydroxythylidene) diphosphonate on bone ingrowth into porous, titanium fiber-mesh implants.
    Kitsugi T; Yamamuro T; Nakamura T; Oka M
    J Arthroplasty; 1995 Apr; 10(2):245-53. PubMed ID: 7798108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber.
    Eriksson RA; Albrektsson T
    J Oral Maxillofac Surg; 1984 Nov; 42(11):705-11. PubMed ID: 6593442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants.
    Nguyen HQ; Deporter DA; Pilliar RM; Valiquette N; Yakubovich R
    Biomaterials; 2004 Feb; 25(5):865-76. PubMed ID: 14609675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osseous penetration rate into implants pretreated with bone cement.
    Albrektsson T
    Arch Orthop Trauma Surg (1978); 1984; 102(3):141-7. PubMed ID: 6703869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bone growth chamber for quantification of electrically induced osteogenesis.
    Buch F; Albrektsson T; Herbst E
    J Orthop Res; 1986; 4(2):194-203. PubMed ID: 3519909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone formation rate in osseointegrated titanium implants. Influence of locally applied haemostasis, peripheral blood, autologous bone marrow and fibrin adhesive system (FAS).
    Kälebo P; Buch F; Albrektsson T
    Scand J Plast Reconstr Surg Hand Surg; 1988; 22(1):53-60. PubMed ID: 2455333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of indomethacin on the regeneration of cortical bone within titanium implants in rabbits.
    Sennerby L; Kälebo P; Thomsen P; Albrektsson T
    Biomaterials; 1993; 14(2):156-8. PubMed ID: 8435461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A light and scanning electron microscopic evaluation of electro-discharge-compacted porous titanium implants in rabbit tibia.
    Drummond JF; Dominici JT; Sammon PJ; Okazaki K; Geissler R; Lifland MI; Anderson SA; Renshaw W
    J Oral Implantol; 1995; 21(4):295-303. PubMed ID: 8699522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.
    Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and Vitallium implants.
    Johansson CB; Sennerby L; Albrektsson T
    Int J Oral Maxillofac Implants; 1991; 6(4):437-41. PubMed ID: 1820312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive glass microspheres as osteopromotive inlays in macrotextured surfaces of Ti and CoCr alloy bone implants: trapezoidal surface grooves without inlay most efficient in resisting torsional forces.
    Keränen P; Moritz N; Alm JJ; Ylänen H; Kommonen B; Aro HT
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1483-91. PubMed ID: 21783158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrin adhesive system (FAS) influence on bone healing rate: a microradiographical evaluation using the bone growth chamber.
    Albrektsson T; Bach A; Edshage S; Jönsson A
    Acta Orthop Scand; 1982 Oct; 53(5):757-63. PubMed ID: 7136585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the difference of bone turnover on peri-titanium implant osteogenesis in ovariectomized rats.
    Okamura A; Ayukawa Y; Iyama S; Koyano K
    J Biomed Mater Res A; 2004 Sep; 70(3):497-505. PubMed ID: 15293324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implant-delivered Alendronate Causes a Dose-dependent Response on Net Bone Formation Around Porous Titanium Implants in Canines.
    Pura JA; Bobyn JD; Tanzer M
    Clin Orthop Relat Res; 2016 May; 474(5):1224-33. PubMed ID: 26831478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hard, soft tissue and in vitro cell response to porous nickel-titanium: a biocompatibility evaluation.
    Rhalmi S; Odin M; Assad M; Tabrizian M; Rivard CH; Yahia LH
    Biomed Mater Eng; 1999; 9(3):151-62. PubMed ID: 10572619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone response to porous tantalum implants in a gap-healing model.
    Fraser D; Mendonca G; Sartori E; Funkenbusch P; Ercoli C; Meirelles L
    Clin Oral Implants Res; 2019 Feb; 30(2):156-168. PubMed ID: 30636059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.