BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23835071)

  • 1. Stable transformation of pleomorphic bloodstream form Trypanosoma brucei.
    MacGregor P; Rojas F; Dean S; Matthews KR
    Mol Biochem Parasitol; 2013 Aug; 190(2):60-2. PubMed ID: 23835071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypanosoma brucei: in vitro slender-to-stumpy differentiation of culture-adapted, monomorphic bloodstream forms.
    Breidbach T; Ngazoa E; Steverding D
    Exp Parasitol; 2002 Aug; 101(4):223-30. PubMed ID: 12594963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei.
    Rico E; Rojas F; Mony BM; Szoor B; Macgregor P; Matthews KR
    Front Cell Infect Microbiol; 2013; 3():78. PubMed ID: 24294594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes.
    Shapiro SZ; Naessens J; Liesegang B; Moloo SK; Magondu J
    Acta Trop; 1984 Dec; 41(4):313-23. PubMed ID: 6152113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Trypanosoma brucei Total and Polysomal mRNA during Development within Its Mammalian Host.
    Capewell P; Monk S; Ivens A; Macgregor P; Fenn K; Walrad P; Bringaud F; Smith TK; Matthews KR
    PLoS One; 2013; 8(6):e67069. PubMed ID: 23840587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the regulatory elements controlling the transmission stage-specific gene expression of PAD1 in Trypanosoma brucei.
    MacGregor P; Matthews KR
    Nucleic Acids Res; 2012 Sep; 40(16):7705-17. PubMed ID: 22684509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei.
    Vassella E; Krämer R; Turner CM; Wankell M; Modes C; van den Bogaard M; Boshart M
    Mol Microbiol; 2001 Jul; 41(1):33-46. PubMed ID: 11454198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput chemical screening for antivirulence developmental phenotypes in Trypanosoma brucei.
    MacGregor P; Ivens A; Shave S; Collie I; Gray D; Auer M; Matthews KR
    Eukaryot Cell; 2014 Mar; 13(3):412-26. PubMed ID: 24442893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient inhibition of protein synthesis accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms.
    Bass KE; Wang CC
    Mol Biochem Parasitol; 1992 Nov; 56(1):129-40. PubMed ID: 1474991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei.
    Mony BM; MacGregor P; Ivens A; Rojas F; Cowton A; Young J; Horn D; Matthews K
    Nature; 2014 Jan; 505(7485):681-685. PubMed ID: 24336212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the growth and differentiation in vivo and in vitro-of bloodstream-form Trypanosoma brucei strain TREU 927.
    van Deursen FJ; Shahi SK; Turner CM; Hartmann C; Guerra-Giraldez C; Matthews KR; Clayton CE
    Mol Biochem Parasitol; 2001 Feb; 112(2):163-71. PubMed ID: 11223123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Occurrence of Malignancy in
    Cai XL; Li SJ; Zhang P; Li Z; Hide G; Lai DH; Lun ZR
    Front Microbiol; 2021; 12():806626. PubMed ID: 35087505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanosome Signaling-Quorum Sensing.
    Matthews KR
    Annu Rev Microbiol; 2021 Oct; 75():495-514. PubMed ID: 34348028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages.
    Naguleswaran A; Doiron N; Roditi I
    BMC Genomics; 2018 Apr; 19(1):227. PubMed ID: 29606092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comment on 'Unexpected plasticity in the life cycle of
    Matthews KR; Larcombe S
    Elife; 2022 Feb; 11():. PubMed ID: 35103595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream.
    Silvester E; McWilliam KR; Matthews KR
    Pathogens; 2017 Jun; 6(3):. PubMed ID: 28657594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide RNAi selection identifies a regulator of transmission stage-enriched gene families and cell-type differentiation in Trypanosoma brucei.
    Rico E; Ivens A; Glover L; Horn D; Matthews KR
    PLoS Pathog; 2017 Mar; 13(3):e1006279. PubMed ID: 28334017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture.
    Reuner B; Vassella E; Yutzy B; Boshart M
    Mol Biochem Parasitol; 1997 Dec; 90(1):269-80. PubMed ID: 9497048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein tyrosine phosphatase TbPTP1: A molecular switch controlling life cycle differentiation in trypanosomes.
    Szöor B; Wilson J; McElhinney H; Tabernero L; Matthews KR
    J Cell Biol; 2006 Oct; 175(2):293-303. PubMed ID: 17043136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gene expression comparison of Trypanosoma brucei and Trypanosoma congolense in the bloodstream of the mammalian host reveals species-specific adaptations to density-dependent development.
    Silvester E; Ivens A; Matthews KR
    PLoS Negl Trop Dis; 2018 Oct; 12(10):e0006863. PubMed ID: 30307943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.