These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 23835155)
1. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. Lee WH; Nan H; Kim HJ; Jin YS J Biotechnol; 2013 Sep; 167(3):316-22. PubMed ID: 23835155 [TBL] [Abstract][Full Text] [Related]
2. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. Lee WH; Jin YS J Biotechnol; 2017 Mar; 245():1-8. PubMed ID: 28143766 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose. Lee WH; Jin YS J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531 [TBL] [Abstract][Full Text] [Related]
4. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Huang R; Guo H; Su R; Qi W; He Z Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443 [TBL] [Abstract][Full Text] [Related]
5. Effects of Engineered Choi HJ; Jin YS; Lee WH J Microbiol Biotechnol; 2022 Jan; 32(1):117-125. PubMed ID: 34949751 [TBL] [Abstract][Full Text] [Related]
7. Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Lee WH; Jin YS J Microbiol Biotechnol; 2021 Jul; 31(7):1035-1043. PubMed ID: 34226403 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization. Fox JM; Levine SE; Blanch HW; Clark DS Biotechnol J; 2012 Mar; 7(3):361-73. PubMed ID: 22228702 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. Shen Y; Zhang Y; Ma T; Bao X; Du F; Zhuang G; Qu Y Bioresour Technol; 2008 Jul; 99(11):5099-103. PubMed ID: 17976983 [TBL] [Abstract][Full Text] [Related]
10. Comparison of process configurations for ethanol production from acid- and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without β-glucosidase expression. Wang G; Liu C; Hong J; Ma Y; Zhang K; Huang X; Zou S; Zhang M Bioresour Technol; 2013 Aug; 142():154-61. PubMed ID: 23735797 [TBL] [Abstract][Full Text] [Related]
11. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. Lian J; Li Y; HamediRad M; Zhao H Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. Bae YH; Kang KH; Jin YS; Seo JH J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384 [TBL] [Abstract][Full Text] [Related]
13. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain. Ha SJ; Wei Q; Kim SR; Galazka JM; Cate JH; Jin YS Appl Environ Microbiol; 2011 Aug; 77(16):5822-5. PubMed ID: 21705527 [TBL] [Abstract][Full Text] [Related]
14. Direct conversion of cellulose into ethanol and ethyl-β-d-glucoside via engineered Saccharomyces cerevisiae. Jayakody LN; Liu JJ; Yun EJ; Turner TL; Oh EJ; Jin YS Biotechnol Bioeng; 2018 Dec; 115(12):2859-2868. PubMed ID: 30011361 [TBL] [Abstract][Full Text] [Related]
15. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
16. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase. Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472 [TBL] [Abstract][Full Text] [Related]
17. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. Tang H; Hou J; Shen Y; Xu L; Yang H; Fang X; Bao X J Microbiol Biotechnol; 2013 Nov; 23(11):1577-85. PubMed ID: 23928840 [TBL] [Abstract][Full Text] [Related]
18. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase. Saitoh S; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701 [TBL] [Abstract][Full Text] [Related]
19. Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process. Geberekidan M; Zhang J; Liu ZL; Bao J Bioprocess Biosyst Eng; 2019 Feb; 42(2):297-304. PubMed ID: 30411143 [TBL] [Abstract][Full Text] [Related]
20. A comparison of the production of ethanol between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using unpretreated cassava pulp and enzyme cocktail. Zhu M; Li P; Gong X; Wang J Biosci Biotechnol Biochem; 2012; 76(4):671-8. PubMed ID: 22484928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]