BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23835412)

  • 1. Effectiveness of urea in enhancing the extractability of 2,4,6-trinitrotoluene from chemically variant soils.
    Das P; Sarkar D; Makris KC; Punamiya P; Datta R
    Chemosphere; 2013 Nov; 93(9):1811-7. PubMed ID: 23835412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanioides.
    Makris KC; Shakya KM; Datta R; Sarkar D; Pachanoor D
    Environ Pollut; 2007 Jul; 148(1):101-6. PubMed ID: 17240499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption-desorption of trinitrotoluene in soils: effect of saturating metal cations.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    Bull Environ Contam Toxicol; 2008 May; 80(5):443-6. PubMed ID: 18496629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vetiver grass is capable of removing TNT from soil in the presence of urea.
    Das P; Datta R; Makris KC; Sarkar D
    Environ Pollut; 2010 May; 158(5):1980-3. PubMed ID: 20047780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of soil organic carbon and colloids in sorption and transport of TNT, RDX and HMX in training range soils.
    Sharma P; Mayes MA; Tang G
    Chemosphere; 2013 Aug; 92(8):993-1000. PubMed ID: 23602657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High uptake of 2,4,6-trinitrotoluene by vetiver grass--potential for phytoremediation?
    Makris KC; Shakya KM; Datta R; Sarkar D; Pachanoor D
    Environ Pollut; 2007 Mar; 146(1):1-4. PubMed ID: 16899329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aniline and 2,4,6-trinitrotoluene associate preferentially to low molecular weight fractions of dissolved soil organic matter.
    Eriksson J; Skyllberg U
    Environ Pollut; 2009 Nov; 157(11):3010-5. PubMed ID: 19564066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of trinitrotoluene in contaminated soils as affected by its initial concentrations and its binding to soil organic matter fractions.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Mar; 43(4):348-56. PubMed ID: 18273739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobility and degradation of trinitrotoluene/metabolites in soil columns: effect of soil organic carbon content.
    Singh N; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):682-93. PubMed ID: 18444069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate functions for predicting the sorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.
    Katseanes CK; Chappell MA; Hopkins BG; Durham BD; Price CL; Porter BE; Miller LF
    J Environ Manage; 2016 Nov; 182():101-110. PubMed ID: 27454101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water.
    Kalderis D; Hawthorne SB; Clifford AA; Gidarakos E
    J Hazard Mater; 2008 Nov; 159(2-3):329-34. PubMed ID: 18384944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of hydration, aging, and carbon content of soil on the evaporation and skin bioavailability of munition contaminants.
    Reifenrath WG; Kammen HO; Reddy G; Major MA; Leach GJ
    J Toxicol Environ Health A; 2008; 71(8):486-94. PubMed ID: 18338283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium.
    Robertson BK; Jjemba PK
    Chemosphere; 2005 Jan; 58(3):263-70. PubMed ID: 15581929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of 2,4,6-trinitrotoluene to natural soils before and after hydrogen peroxide application.
    Hwang S; Batchelor CJ; Davis JL; MacMillan DK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):581-92. PubMed ID: 15756969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry.
    Schrader PS; Hess TF
    J Environ Qual; 2004; 33(4):1202-9. PubMed ID: 15254101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of soil organic matter chemistry on sorption of trinitrotoluene and 2,4-dinitrotoluene.
    Singh N; Berns AE; Hennecke D; Hoerner J; Koerdel W; Schaeffer A
    J Hazard Mater; 2010 Jan; 173(1-3):343-8. PubMed ID: 19748732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating uptake and transport of TNT by plants using STELLA.
    Ouyang Y; Huang CH; Huang DY; Lin D; Cui L
    Chemosphere; 2007 Oct; 69(8):1245-52. PubMed ID: 17655913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solute transport and extraction by a single root in unsaturated soils: model development and experiment.
    Kim J; Sung K; Corapcioglu MY; Drew MC
    Environ Pollut; 2004 Sep; 131(1):61-70. PubMed ID: 15210276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.