BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23835469)

  • 1. Separation of carbohydrates using hydrophilic interaction liquid chromatography.
    Fu Q; Liang T; Li Z; Xu X; Ke Y; Jin Y; Liang X
    Carbohydr Res; 2013 Sep; 379():13-7. PubMed ID: 23835469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase.
    Shen A; Guo Z; Cai X; Xue X; Liang X
    J Chromatogr A; 2012 Mar; 1228():175-82. PubMed ID: 22099229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography.
    Liang T; Fu Q; Shen A; Wang H; Jin Y; Xin H; Ke Y; Guo Z; Liang X
    J Chromatogr A; 2015 Apr; 1388():110-8. PubMed ID: 25725956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography.
    Shen A; Li X; Dong X; Wei J; Guo Z; Liang X
    J Chromatogr A; 2013 Nov; 1314():63-9. PubMed ID: 24075460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underivatized amylose and cellulose as new stationary phases for hydrophilic interaction chromatography.
    Lehnert P; Douša M; Lemr K
    J Sep Sci; 2013 Oct; 36(20):3345-50. PubMed ID: 23983151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation of retention behavior of carbohydrate compounds on the zwitterionic hydrophilic interaction liquid chromatographic column].
    Jiang G; Shen A; Guo Z; Li X; Liang X
    Se Pu; 2015 Sep; 33(9):929-33. PubMed ID: 26753278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of complex sugar mixtures on a hydrolytically stable bidentate urea-type stationary phase for hydrophilic interaction near ultra high performance liquid chromatography.
    Kotoni D; Ciogli A; Villani C; Bell DS; Gasparrini F
    J Sep Sci; 2014 Mar; 37(5):527-35. PubMed ID: 24376221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode.
    Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S
    Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucaminium ionic liquid-functionalized stationary phase for the separation of nucleosides in hydrophilic interaction chromatography.
    Jiang Q; Zhang M; Wang X; Guo Y; Qiu H; Zhang S
    Anal Bioanal Chem; 2015 Oct; 407(25):7667-72. PubMed ID: 26231689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention characteristics of poly(N-(1H-tetrazole-5-yl)-methacrylamide)-bonded stationary phase in hydrophilic interaction chromatography.
    Fu X; Cebo M; Ikegami T; Lämmerhofer M
    J Chromatogr A; 2020 Jan; 1609():460500. PubMed ID: 31515078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of cephalosporins by hydrophilic interaction chromatography.
    Liu Q; Xu L; Ke Y; Jin Y; Zhang F; Liang X
    J Pharm Biomed Anal; 2011 Feb; 54(3):623-8. PubMed ID: 21035295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of the most relevant parameters for method development in ultra-high performance hydrophilic interaction chromatography.
    Periat A; Debrus B; Rudaz S; Guillarme D
    J Chromatogr A; 2013 Mar; 1282():72-83. PubMed ID: 23411147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of a novel carboxyl stationary phase by "thiol-ene" click chemistry for hydrophilic interaction chromatography.
    Peng XT; Liu T; Ji SX; Feng YQ
    J Sep Sci; 2013 Aug; 36(16):2571-7. PubMed ID: 23749722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography.
    West C; Khater S; Lesellier E
    J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click beta-cyclodextrin" stationary phase.
    Guo Z; Jin Y; Liang T; Liu Y; Xu Q; Liang X; Lei A
    J Chromatogr A; 2009 Jan; 1216(2):257-63. PubMed ID: 19070861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode.
    Bicker W; Wu J; Yeman H; Albert K; Lindner W
    J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography.
    Qiao L; Dou A; Shi X; Li H; Shan Y; Lu X; Xu G
    J Chromatogr A; 2013 Apr; 1286():137-45. PubMed ID: 23489487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of carbohydrate isomers and anomers on poly-N-(1H-tetrazole-5-yl)-methacrylamide-bonded stationary phase by hydrophilic interaction chromatography as well as determination of anomer interconversion energy barriers.
    Fu X; Cebo M; Ikegami T; Lämmerhofer M
    J Chromatogr A; 2020 Jun; 1620():460981. PubMed ID: 32115232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: hydrophilicity, charge effects, structural selectivity, and separation efficiency.
    Kawachi Y; Ikegami T; Takubo H; Ikegami Y; Miyamoto M; Tanaka N
    J Chromatogr A; 2011 Sep; 1218(35):5903-19. PubMed ID: 21782195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.