These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23835484)

  • 1. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids.
    Brites CD; Lima PP; Silva NJ; Millán A; Amaral VS; Palacio F; Carlos LD
    Nanoscale; 2013 Aug; 5(16):7572-80. PubMed ID: 23835484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric nanothermometer based on an emissive Ln3+-organic framework.
    Cadiau A; Brites CD; Costa PM; Ferreira RA; Rocha J; Carlos LD
    ACS Nano; 2013 Aug; 7(8):7213-8. PubMed ID: 23869817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties.
    Piñol R; Brites CD; Bustamante R; Martínez A; Silva NJ; Murillo JL; Cases R; Carrey J; Estepa C; Sosa C; Palacio F; Carlos LD; Millán A
    ACS Nano; 2015 Mar; 9(3):3134-42. PubMed ID: 25693033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of dopant concentration on temperature dependent emission spectra in LiLa1-x-yEuxTbyP4O12 nanocrystals: toward rational design of highly-sensitive luminescent nanothermometers.
    Marciniak L; Bednarkiewicz A
    Phys Chem Chem Phys; 2016 Jun; 18(23):15584-92. PubMed ID: 27220884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inherently Eu
    Pan Y; Xie X; Huang Q; Gao C; Wang Y; Wang L; Yang B; Su H; Huang L; Huang W
    Adv Mater; 2018 Apr; 30(14):e1705256. PubMed ID: 29430797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive NIR-II Ratiometric Nanothermometers for 3D In Vivo Thermal Imaging.
    Li D; Jia M; Jia T; Chen G
    Adv Mater; 2024 Mar; 36(11):e2309452. PubMed ID: 38088453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterizations of YZ-BDC:Eu
    Kieu Giang LT; Trejgis K; Marciniak Ł; Opalińska A; Koltsov IE; Łojkowski W
    RSC Adv; 2022 Apr; 12(21):13065-13073. PubMed ID: 35497002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport properties of alumina nanofluids.
    Wong KF; Kurma T
    Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ga
    Salerno EV; Zeler J; Eliseeva SV; Hernández-Rodríguez MA; Carneiro Neto AN; Petoud S; Pecoraro VL; Carlos LD
    Chemistry; 2020 Nov; 26(61):13792-13796. PubMed ID: 32663350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid multifunctionalized mesostructured stellate silica nanoparticles loaded with β-diketonate Tb
    Pelluau T; Sene S; Ali LMA; Félix G; Manhes F; Carneiro Neto AN; Carlos LD; Albela B; Bonneviot L; Oliviero E; Gary-Bobo M; Guari Y; Larionova J
    Nanoscale; 2023 Sep; 15(35):14409-14422. PubMed ID: 37614145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of rare-earth-doped infrared luminescent nanothermometers.
    Labrador-Páez L; Pedroni M; Speghini A; García-Solé J; Haro-González P; Jaque D
    Nanoscale; 2018 Dec; 10(47):22319-22328. PubMed ID: 30468230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors.
    Zheng S; Chen W; Tan D; Zhou J; Guo Q; Jiang W; Xu C; Liu X; Qiu J
    Nanoscale; 2014 Jun; 6(11):5675-9. PubMed ID: 24769587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for enhanced thermal conduction through percolating structures in nanofluids.
    Philip J; Shima PD; Raj B
    Nanotechnology; 2008 Jul; 19(30):305706. PubMed ID: 21828773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer.
    Marciniak L; Prorok K; Francés-Soriano L; Pérez-Prieto J; Bednarkiewicz A
    Nanoscale; 2016 Mar; 8(9):5037-42. PubMed ID: 26865210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of efficient dual activating ratiometric YVO
    Kolesnikov IE; Mamonova DV; Kalinichev AA; Kurochkin MA; Medvedev VA; Kolesnikov EY; Lähderanta E; Manshina AA
    Nanoscale; 2020 Mar; 12(10):5953-5960. PubMed ID: 32108842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature synthesis of hydrophilic Ln(3+)-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: energy transfer, size-dependent and color-tunable luminescence properties.
    Yang D; Li G; Kang X; Cheng Z; Ma P; Peng C; Lian H; Li C; Lin J
    Nanoscale; 2012 Jun; 4(11):3450-9. PubMed ID: 22539001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.
    Caillé F; Bonnet CS; Buron F; Villette S; Helm L; Petoud S; Suzenet F; Tóth E
    Inorg Chem; 2012 Feb; 51(4):2522-32. PubMed ID: 22233349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three isostructural Eu
    Yang Y; Wang Y; Feng Y; Song X; Cao C; Zhang G; Liu W
    Talanta; 2020 Feb; 208():120354. PubMed ID: 31816801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands.
    Bassett AP; Magennis SW; Glover PB; Lewis DJ; Spencer N; Parsons S; Williams RM; De Cola L; Pikramenou Z
    J Am Chem Soc; 2004 Aug; 126(30):9413-24. PubMed ID: 15281834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles.
    Rocha U; Jacinto da Silva C; Ferreira Silva W; Guedes I; Benayas A; Martínez Maestro L; Acosta Elias M; Bovero E; van Veggel FC; García Solé JA; Jaque D
    ACS Nano; 2013 Feb; 7(2):1188-99. PubMed ID: 23311347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.