These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 23835484)
21. Cocktails of Tb(3+) and Eu(3+) complexes: a general platform for the design of ratiometric optical probes. Tremblay MS; Halim M; Sames D J Am Chem Soc; 2007 Jun; 129(24):7570-7. PubMed ID: 17518468 [TBL] [Abstract][Full Text] [Related]
22. What determines the performance of lanthanide-based ratiometric nanothermometers? Jia M; Sun Z; Zhang M; Xu H; Fu Z Nanoscale; 2020 Oct; 12(40):20776-20785. PubMed ID: 33030482 [TBL] [Abstract][Full Text] [Related]
25. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. Albers AE; Chan EM; McBride PM; Ajo-Franklin CM; Cohen BE; Helms BA J Am Chem Soc; 2012 Jun; 134(23):9565-8. PubMed ID: 22642769 [TBL] [Abstract][Full Text] [Related]
26. Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer. McAnaney TB; Shi X; Abbyad P; Jung H; Remington SJ; Boxer SG Biochemistry; 2005 Jun; 44(24):8701-11. PubMed ID: 15952777 [TBL] [Abstract][Full Text] [Related]
27. Mixed-Lanthanoid Metal-Organic Framework for Ratiometric Cryogenic Temperature Sensing. Liu X; Akerboom S; de Jong M; Mutikainen I; Tanase S; Meijerink A; Bouwman E Inorg Chem; 2015 Dec; 54(23):11323-9. PubMed ID: 26599972 [TBL] [Abstract][Full Text] [Related]
28. Boosting the sensitivity of Nd(3+)-based luminescent nanothermometers. Balabhadra S; Debasu ML; Brites CD; Nunes LA; Malta OL; Rocha J; Bettinelli M; Carlos LD Nanoscale; 2015 Nov; 7(41):17261-7. PubMed ID: 26426085 [TBL] [Abstract][Full Text] [Related]
29. Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots. Grodzińska D; Evers WH; Dorland R; van Rijssel J; van Huis MA; Meijerink A; de Mello Donegá C; Vanmaekelbergh D Small; 2011 Dec; 7(24):3493-501. PubMed ID: 22021097 [TBL] [Abstract][Full Text] [Related]
30. Visible light generation of iodine atoms and I-I bonds: sensitized I(-) oxidation and I(3)(-) photodissociation. Gardner JM; Abrahamsson M; Farnum BH; Meyer GJ J Am Chem Soc; 2009 Nov; 131(44):16206-14. PubMed ID: 19848407 [TBL] [Abstract][Full Text] [Related]
31. Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method. Sikora A; Ftouni H; Richard J; Hébert C; Eon D; Omnès F; Bourgeois O Rev Sci Instrum; 2012 May; 83(5):054902. PubMed ID: 22667639 [TBL] [Abstract][Full Text] [Related]
32. Highly Sensitive Upconverting Nanoplatform for Luminescent Thermometry from Ambient to Cryogenic Temperature. Mukhuti K; Adusumalli VNKB; Koppisetti HVSRM; Bansal B; Mahalingam V Chemphyschem; 2020 Aug; 21(15):1731-1736. PubMed ID: 32400937 [TBL] [Abstract][Full Text] [Related]
33. Cryogenic luminescent thermometers based on multinuclear Eu Kaczmarek AM; Liu J; Laforce B; Vincze L; Van Hecke K; Van Deun R Dalton Trans; 2017 May; 46(18):5781-5785. PubMed ID: 28401979 [TBL] [Abstract][Full Text] [Related]
34. Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals. Bryan JD; Heald SM; Chambers SA; Gamelin DR J Am Chem Soc; 2004 Sep; 126(37):11640-7. PubMed ID: 15366911 [TBL] [Abstract][Full Text] [Related]
35. Fully automated measurement setup for non-destructive characterization of thermoelectric materials near room temperature. Schwyter ES; Helbling T; Glatz W; Hierold C Rev Sci Instrum; 2012 Jul; 83(7):074904. PubMed ID: 22852715 [TBL] [Abstract][Full Text] [Related]
36. Ratiometric Nanothermometer Based on a Radical Excimer for In Vivo Sensing. Blasi D; Gonzalez-Pato N; Rodriguez Rodriguez X; Diez-Zabala I; Srinivasan SY; Camarero N; Esquivias O; Roldán M; Guasch J; Laromaine A; Gorostiza P; Veciana J; Ratera I Small; 2023 Aug; 19(32):e2207806. PubMed ID: 37060223 [TBL] [Abstract][Full Text] [Related]
37. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester. Burg BR; Kolly M; Blasakis N; Gschwend D; Zürcher J; Brunschwiler T Rev Sci Instrum; 2015 Dec; 86(12):124903. PubMed ID: 26724058 [TBL] [Abstract][Full Text] [Related]
38. The properties of bio-energy transport and influence of structure nonuniformity and temperature of systems on energy transport along polypeptide chains. Pang XF Prog Biophys Mol Biol; 2012 Jan; 108(1-2):1-46. PubMed ID: 21951575 [TBL] [Abstract][Full Text] [Related]
39. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid. Baby TT; Ramaprabhu S Nanoscale; 2011 May; 3(5):2208-14. PubMed ID: 21455535 [TBL] [Abstract][Full Text] [Related]
40. Synthesis, Cytotoxicity Assessment and Optical Properties Characterization of Colloidal GdPO Maciejewska K; Poźniak B; Tikhomirov M; Kobylińska A; Marciniak L Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32121089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]