BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23835508)

  • 1. An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis.
    Maruyama H; Harwood JC; Moore KM; Paszkiewicz K; Durley SC; Fukushima H; Atomi H; Takeyasu K; Kent NA
    EMBO Rep; 2013 Aug; 14(8):711-7. PubMed ID: 23835508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone and TK0471/TrmBL2 form a novel heterogeneous genome architecture in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Maruyama H; Shin M; Oda T; Matsumi R; Ohniwa RL; Itoh T; Shirahige K; Imanaka T; Atomi H; Yoshimura SH; Takeyasu K
    Mol Biol Cell; 2011 Feb; 22(3):386-98. PubMed ID: 21148291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An archaeal histone is required for transformation of Thermococcus kodakarensis.
    Čuboňováa L; Katano M; Kanai T; Atomi H; Reeve JN; Santangelo TJ
    J Bacteriol; 2012 Dec; 194(24):6864-74. PubMed ID: 23065975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional Repressor TrmBL2 from Thermococcus kodakarensis Forms Filamentous Nucleoprotein Structures and Competes with Histones for DNA Binding in a Salt- and DNA Supercoiling-dependent Manner.
    Efremov AK; Qu Y; Maruyama H; Lim CJ; Takeyasu K; Yan J
    J Biol Chem; 2015 Jun; 290(25):15770-15784. PubMed ID: 25931116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Archaea: The Final Frontier of Chromatin.
    Laursen SP; Bowerman S; Luger K
    J Mol Biol; 2021 Mar; 433(6):166791. PubMed ID: 33383035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Archaeal nucleosome positioning in vivo and in vitro is directed by primary sequence motifs.
    Nalabothula N; Xi L; Bhattacharyya S; Widom J; Wang JP; Reeve JN; Santangelo TJ; Fondufe-Mittendorf YN
    BMC Genomics; 2013 Jun; 14():391. PubMed ID: 23758892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archaeal histone selection of nucleosome positioning sequences and the procaryotic origin of histone-dependent genome evolution.
    Bailey KA; Pereira SL; Widom J; Reeve JN
    J Mol Biol; 2000 Oct; 303(1):25-34. PubMed ID: 11021967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeal DNA on the histone merry-go-round.
    Bhattacharyya S; Mattiroli F; Luger K
    FEBS J; 2018 Sep; 285(17):3168-3174. PubMed ID: 29729078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of histone-based chromatin in Archaea.
    Mattiroli F; Bhattacharyya S; Dyer PN; White AE; Sandman K; Burkhart BW; Byrne KR; Lee T; Ahn NG; Santangelo TJ; Reeve JN; Luger K
    Science; 2017 Aug; 357(6351):609-612. PubMed ID: 28798133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis.
    Kuba Y; Ishino S; Yamagami T; Tokuhara M; Kanai T; Fujikane R; Daiyasu H; Atomi H; Ishino Y
    Genes Cells; 2012 Nov; 17(11):923-37. PubMed ID: 23078585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin.
    Sanders TJ; Lammers M; Marshall CJ; Walker JE; Lynch ER; Santangelo TJ
    Mol Microbiol; 2019 Mar; 111(3):784-797. PubMed ID: 30592095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Hypersaline Archaeal Histones HpyA and HstA Are DNA Binding Proteins That Defy Categorization According to Commonly Used Functional Criteria.
    Sakrikar S; Hackley RK; Martinez-Pastor M; Darnell CL; Vreugdenhil A; Schmid AK
    mBio; 2023 Apr; 14(2):e0344922. PubMed ID: 36779711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary Electrophoresis-Based Functional Genomics Screening to Discover Novel Archaeal DNA Modifying Enzymes.
    Zatopek KM; Fossa SL; Bilotti K; Caffrey PJ; Chuzel L; Gehring AM; Lohman GJS; Taron CH; Gardner AF
    Appl Environ Microbiol; 2022 Jan; 88(2):e0213721. PubMed ID: 34788065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaeal histone-based chromatin structures regulate transcription elongation rates.
    Wenck BR; Vickerman RL; Burkhart BW; Santangelo TJ
    Commun Biol; 2024 Feb; 7(1):236. PubMed ID: 38413771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea.
    Visone V; Vettone A; Serpe M; Valenti A; Perugino G; Rossi M; Ciaramella M
    Int J Mol Sci; 2014 Sep; 15(9):17162-87. PubMed ID: 25257534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the RNaseH2 enzyme-initiated ribonucleotide excision repair pathway in Archaea.
    Heider MR; Burkhart BW; Santangelo TJ; Gardner AF
    J Biol Chem; 2017 May; 292(21):8835-8845. PubMed ID: 28373277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of Thermococcus kodakarensis Endonuclease III reveals the roles of evolutionarily conserved residues.
    Shiraishi M; Mizutani K; Yamamoto J; Iwai S
    DNA Repair (Amst); 2020 Jun; 90():102859. PubMed ID: 32408140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The TK0271 Protein Activates Transcription of Aromatic Amino Acid Biosynthesis Genes in the Hyperthermophilic Archaeon Thermococcus kodakarensis.
    Yamamoto Y; Kanai T; Kaneseki T; Atomi H
    mBio; 2019 Sep; 10(5):. PubMed ID: 31506306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis.
    Nagata M; Ishino S; Yamagami T; Ishino Y
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):695-704. PubMed ID: 30582424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and structural properties of archaeal hypernucleosomes.
    Henneman B; Brouwer TB; Erkelens AM; Kuijntjes GJ; van Emmerik C; van der Valk RA; Timmer M; Kirolos NCS; van Ingen H; van Noort J; Dame RT
    Nucleic Acids Res; 2021 May; 49(8):4338-4349. PubMed ID: 33341892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.