These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23835621)

  • 21. Liquid scintillators with near infrared emission based on organoboron conjugated polymers.
    Tanaka K; Yanagida T; Yamane H; Hirose A; Yoshii R; Chujo Y
    Bioorg Med Chem Lett; 2015 Nov; 25(22):5331-4. PubMed ID: 26403927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional porous organic polymers for heterogeneous catalysis.
    Zhang Y; Riduan SN
    Chem Soc Rev; 2012 Mar; 41(6):2083-94. PubMed ID: 22134621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monolithic columns based on a poly(styrene-divinylbenzene-methacrylic acid) copolymer for capillary liquid chromatography of small organic molecules.
    Svobodová A; Křížek T; Sirc J; Sálek P; Tesařová E; Coufal P; Stulík K
    J Chromatogr A; 2011 Mar; 1218(11):1544-7. PubMed ID: 21306717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and evaluation of open-tubular capillary column combining a metal-organic framework and a brush-shaped polymer for liquid chromatography.
    Chen K; Zhang L; Zhang W
    J Sep Sci; 2018 Jun; 41(11):2347-2353. PubMed ID: 29600554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and characterization of lauryl methacrylate-based monolithic microbore column for reversed-phase liquid chromatography.
    Shu S; Kobayashi H; Kojima N; Sabarudin A; Umemura T
    J Chromatogr A; 2011 Aug; 1218(31):5228-34. PubMed ID: 21703629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced stability and CO2 affinity of a UiO-66 type metal-organic framework decorated with dimethyl groups.
    Huang Y; Qin W; Li Z; Li Y
    Dalton Trans; 2012 Aug; 41(31):9283-5. PubMed ID: 22763859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal-Organic Framework via a "Click" Reaction.
    Li B; Gui B; Hu G; Yuan D; Wang C
    Inorg Chem; 2015 Jun; 54(11):5139-41. PubMed ID: 25955401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of monomer mixture composition on structure and chromatographic properties of poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monolithic rod columns for separation of small molecules.
    Smirnov KN; Dyatchkov IA; Telnov MV; Pirogov AV; Shpigun OA
    J Chromatogr A; 2011 Jul; 1218(30):5010-9. PubMed ID: 21194698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors influencing polybutadiene deposition within porous chromatographic zirconia.
    Li J; Reeder DH; McCormick AV; Carr PW
    J Chromatogr A; 1997 Dec; 791(1-2):45-52. PubMed ID: 9463892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale UiO-MOF-based luminescent sensors for highly selective detection of cysteine and glutathione and their application in bioimaging.
    Li YA; Zhao CW; Zhu NX; Liu QK; Chen GJ; Liu JB; Zhao XD; Ma JP; Zhang S; Dong YB
    Chem Commun (Camb); 2015 Dec; 51(100):17672-5. PubMed ID: 26489535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions).
    Huš S; Kolar M; Krajnc P
    J Chromatogr A; 2016 Mar; 1437():168-175. PubMed ID: 26875120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of mobile phase composition on the performance of porous polymeric monoliths in the elution of small molecules.
    Causon TJ; Hilder EF; Nischang I
    J Chromatogr A; 2012 Nov; 1263():108-12. PubMed ID: 23040977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel separation medium spongy monolith for high throughput analyses.
    Watanabe F; Kubo T; Kaya K; Hosoya K
    J Chromatogr A; 2009 Oct; 1216(44):7402-8. PubMed ID: 19577755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monolithic bed structure for capillary liquid chromatography.
    Aggarwal P; Tolley HD; Lee ML
    J Chromatogr A; 2012 Jan; 1219():1-14. PubMed ID: 22169193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-organic framework materials as chemical sensors.
    Kreno LE; Leong K; Farha OK; Allendorf M; Van Duyne RP; Hupp JT
    Chem Rev; 2012 Feb; 112(2):1105-25. PubMed ID: 22070233
    [No Abstract]   [Full Text] [Related]  

  • 36. Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules.
    Arrua RD; Talebi M; Causon TJ; Hilder EF
    Anal Chim Acta; 2012 Aug; 738():1-12. PubMed ID: 22790694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A flexible porous coordination polymer functionalized by unsaturated metal clusters.
    Zhang JP; Horike S; Kitagawa S
    Angew Chem Int Ed Engl; 2007; 46(6):889-92. PubMed ID: 17183498
    [No Abstract]   [Full Text] [Related]  

  • 38. Highly cross-linked polymeric capillary monoliths for the separation of low, medium, and high molecular weight analytes.
    Lubbad SH; Buchmeiser MR
    J Sep Sci; 2009 Aug; 32(15-16):2521-9. PubMed ID: 19569097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of fluorinated, monolithic columns for improved chromatographic separations of fluorous-tagged analytes.
    Daley AB; Oleschuk RD
    J Chromatogr A; 2009 Jan; 1216(5):772-80. PubMed ID: 19100552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size matters: incorporation of poly(acrylic acid) and small molecules into hierarchically porous metal oxides prepared with and without templates.
    Drisko GL; Imperia P; de los Reyes M; Luca V; Caruso RA
    Langmuir; 2010 Sep; 26(17):14203-9. PubMed ID: 20806966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.