These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23835621)

  • 41. Metal-organic frameworks for reverse-phase high-performance liquid chromatography.
    Liu SS; Yang CX; Wang SW; Yan XP
    Analyst; 2012 Feb; 137(4):816-8. PubMed ID: 22159194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins.
    Li Y; Tolley HD; Lee ML
    J Chromatogr A; 2010 Jul; 1217(30):4934-45. PubMed ID: 20576269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The first route to highly stable crystalline microporous zirconium phosphonate metal-organic frameworks.
    Taddei M; Costantino F; Marmottini F; Comotti A; Sozzani P; Vivani R
    Chem Commun (Camb); 2014 Dec; 50(94):14831-4. PubMed ID: 25325082
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates.
    Morris W; Briley WE; Auyeung E; Cabezas MD; Mirkin CA
    J Am Chem Soc; 2014 May; 136(20):7261-4. PubMed ID: 24818877
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystalline-state guest-exchange and gas-adsorption phenomenon for a "soft" supramolecular porous framework stacking by a rigid linear coordination polymer.
    Hu S; He KH; Zeng MH; Zou HH; Jiang YM
    Inorg Chem; 2008 Jun; 47(12):5218-24. PubMed ID: 18479120
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry.
    Urban J; Eeltink S; Jandera P; Schoenmakers PJ
    J Chromatogr A; 2008 Feb; 1182(2):161-8. PubMed ID: 18206896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-pot synthesis of N-methylimidazolium-based porous polymer monolith for capillary electrochromatography via free radical copolymerization and quaterisation.
    Li Y; Chen Y; Wang K; Nie L; Yao S
    Electrophoresis; 2012 Jul; 33(13):2005-11. PubMed ID: 22806466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A microporous metal-organic framework for gas-chromatographic separation of alkanes.
    Chen B; Liang C; Yang J; Contreras DS; Clancy YL; Lobkovsky EB; Yaghi OM; Dai S
    Angew Chem Int Ed Engl; 2006 Feb; 45(9):1390-3. PubMed ID: 16425335
    [No Abstract]   [Full Text] [Related]  

  • 49. Selective separation of water, methanol, and ethanol by a porous coordination polymer built with a flexible tetrahedral ligand.
    Shigematsu A; Yamada T; Kitagawa H
    J Am Chem Soc; 2012 Aug; 134(32):13145-7. PubMed ID: 22849575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent strategies to enhance the performance of polymer monoliths for analytical separations.
    Maya F; Paull B
    J Sep Sci; 2019 Apr; 42(8):1564-1576. PubMed ID: 30770635
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for mu-HPLC and capillary electrochromatography.
    Li Y; Chen Y; Xiang R; Ciuparu D; Pfefferle LD; Horváth C; Wilkins JA
    Anal Chem; 2005 Mar; 77(5):1398-406. PubMed ID: 15732924
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules.
    Trojer L; Bisjak CP; Wieder W; Bonn GK
    J Chromatogr A; 2009 Aug; 1216(35):6303-9. PubMed ID: 19632682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast separation of low molecular weight analytes on structurally optimized polymeric capillary monoliths.
    Lubbad SH; Buchmeiser MR
    J Chromatogr A; 2010 May; 1217(19):3223-30. PubMed ID: 19932481
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of sub-micron skeletal monoliths with high capacity for liquid chromatography.
    Yao C; Qi L; Yang G; Wang F
    J Sep Sci; 2010 Mar; 33(4-5):475-83. PubMed ID: 20063358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules.
    Guo Z; Xu H; Su S; Cai J; Dang S; Xiang S; Qian G; Zhang H; O'Keeffe M; Chen B
    Chem Commun (Camb); 2011 May; 47(19):5551-3. PubMed ID: 21468403
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase.
    Yang CX; Liu SS; Wang HF; Wang SW; Yan XP
    Analyst; 2012 Jan; 137(1):133-9. PubMed ID: 22034617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The chromatography of poly(phenylene ether) on a porous graphitic carbon sorbent.
    Moyses S; Ginzburg A
    J Chromatogr A; 2016 Oct; 1468():136-142. PubMed ID: 27658381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A soft copper(II) porous coordination polymer with unprecedented aqua bridge and selective adsorption properties.
    Quartapelle Procopio E; Fukushima T; Barea E; Navarro JA; Horike S; Kitagawa S
    Chemistry; 2012 Oct; 18(41):13117-25. PubMed ID: 22933314
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ fabricated porous filters for microsystems.
    Moorthy J; Beebe DJ
    Lab Chip; 2003 May; 3(2):62-6. PubMed ID: 15100783
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Methacrylate polymerization using a dinuclear zirconocene initiator: a new approach for the controlled synthesis of methacrylate polymers.
    Stojcevic G; Kim H; Taylor NJ; Marder TB; Collins S
    Angew Chem Int Ed Engl; 2004 Oct; 43(41):5523-6. PubMed ID: 15484236
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.