These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2383573)

  • 1. Thermodynamics of protein-peptide interactions in the ribonuclease S system studied by titration calorimetry.
    Connelly PR; Varadarajan R; Sturtevant JM; Richards FM
    Biochemistry; 1990 Jun; 29(25):6108-14. PubMed ID: 2383573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat capacity changes for protein-peptide interactions in the ribonuclease S system.
    Varadarajan R; Connelly PR; Sturtevant JM; Richards FM
    Biochemistry; 1992 Feb; 31(5):1421-6. PubMed ID: 1736999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of the helix-coil transition: Binding of S15 and a hybrid sequence, disulfide stabilized peptide to the S-protein.
    Bastos M; Pease JH; Wemmer DE; Murphy KP; Connelly PR
    Proteins; 2001 Mar; 42(4):523-30. PubMed ID: 11170206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and structural consequences of changing a sulfur atom to a methylene group in the M13Nle mutation in ribonuclease-S.
    Thomson J; Ratnaparkhi GS; Varadarajan R; Sturtevant JM; Richards FM
    Biochemistry; 1994 Jul; 33(28):8587-93. PubMed ID: 8031793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic structures of ribonuclease S variants with nonpolar substitution at position 13: packing and cavities.
    Varadarajan R; Richards FM
    Biochemistry; 1992 Dec; 31(49):12315-27. PubMed ID: 1463720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and thermodynamic consequences of introducing alpha-aminoisobutyric acid in the S peptide of ribonuclease S.
    Ratnaparkhi GS; Awasthi SK; Rani P; Balaram P; Varadarajan R
    Protein Eng; 2000 Oct; 13(10):697-702. PubMed ID: 11112508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and structural studies of cavity formation in proteins suggest that loss of packing interactions rather than the hydrophobic effect dominates the observed energetics.
    Ratnaparkhi GS; Varadarajan R
    Biochemistry; 2000 Oct; 39(40):12365-74. PubMed ID: 11015216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of protein-peptide interactions in the ribonuclease-S system studied by molecular dynamics and free energy calculations.
    Simonson T; Brünger AT
    Biochemistry; 1992 Sep; 31(36):8661-74. PubMed ID: 1390651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states.
    Ratnaparkhi GS; Varadarajan R
    J Biol Chem; 2001 Aug; 276(31):28789-98. PubMed ID: 11373282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refinement of the crystal structure of ribonuclease S. Comparison with and between the various ribonuclease A structures.
    Kim EE; Varadarajan R; Wyckoff HW; Richards FM
    Biochemistry; 1992 Dec; 31(49):12304-14. PubMed ID: 1463719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of S-protein with S-peptide and with synthetic S-peptide analogs. A spectroscopic and calorimetric investigation.
    Rocchi R; Borin G; Marchiori F; Moroder L; Peggion E; Scoffone E; Crescenzi V; Quadrifoglio F
    Biochemistry; 1972 Jan; 11(1):50-7. PubMed ID: 5061871
    [No Abstract]   [Full Text] [Related]  

  • 12. Protein stabilization through phage display.
    Chakravarty S; Mitra N; Queitsch I; Surolia A; Varadarajan R; Dübel S
    FEBS Lett; 2000 Jul; 476(3):296-300. PubMed ID: 10913631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The design and production of semisynthetic ribonucleases with increased thermostability by incorporation of S-peptide analogues with enhanced helical stability.
    Mitchinson C; Baldwin RL
    Proteins; 1986 Sep; 1(1):23-33. PubMed ID: 3449849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic structure of an active, sequence-engineered ribonuclease.
    Taylor HC; Komoriya A; Chaiken IM
    Proc Natl Acad Sci U S A; 1985 Oct; 82(19):6423-6. PubMed ID: 3863103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic analysis of a hydrophobic binding site: probing the PDZ domain with nonproteinogenic peptide ligands.
    Saro D; Klosi E; Paredes A; Spaller MR
    Org Lett; 2004 Sep; 6(20):3429-32. PubMed ID: 15387515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attempts to delineate the relative contributions of changes in hydrophobicity and packing to changes in stability of ribonuclease S mutants.
    Das M; Rao BV; Ghosh S; Varadarajan R
    Biochemistry; 2005 Apr; 44(15):5923-30. PubMed ID: 15823052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimum information content and formation of interacting ribonuclease fragment complexes.
    Kanmera T; Homandberg GA; Komoriya A; Chaiken IM
    Int J Pept Protein Res; 1983 Jan; 21(1):74-83. PubMed ID: 6826284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H n.m.r. parameters of the N-terminal 19-residue S-peptide of ribonuclease in aqueous solution.
    Gallego E; Herranz J; Nieto JL; Rico M; Santoro J
    Int J Pept Protein Res; 1983 Mar; 21(3):242-53. PubMed ID: 6853026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol.
    Nelson JW; Kallenbach NR
    Proteins; 1986 Nov; 1(3):211-7. PubMed ID: 3449856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the hydrophobic effect in an antigen-antibody protein-protein interface.
    Sundberg EJ; Urrutia M; Braden BC; Isern J; Tsuchiya D; Fields BA; Malchiodi EL; Tormo J; Schwarz FP; Mariuzza RA
    Biochemistry; 2000 Dec; 39(50):15375-87. PubMed ID: 11112523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.