These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 23835738)
1. Subtraction micro-computed tomography of angiogenesis and osteogenesis during bone repair using synchrotron radiation with a novel contrast agent. Matsumoto T; Goto D; Sato S Lab Invest; 2013 Sep; 93(9):1054-63. PubMed ID: 23835738 [TBL] [Abstract][Full Text] [Related]
2. Stimulating angiogenesis mitigates the unloading-induced reduction in osteogenesis in early-stage bone repair in rats. Matsumoto T; Sato S Physiol Rep; 2015 Mar; 3(3):. PubMed ID: 25780087 [TBL] [Abstract][Full Text] [Related]
3. Three Dimensional Quantification of Microarchitecture and Vessel Regeneration by Synchrotron Radiation Microcomputed Tomography in a Rat Model of Spinal Cord Injury. Cao Y; Zhou Y; Ni S; Wu T; Li P; Liao S; Hu J; Lu H J Neurotrauma; 2017 Mar; 34(6):1187-1199. PubMed ID: 27676128 [TBL] [Abstract][Full Text] [Related]
4. Effect of low-intensity whole-body vibration on bone defect repair and associated vascularization in mice. Matsumoto T; Goto D Med Biol Eng Comput; 2017 Dec; 55(12):2257-2266. PubMed ID: 28660538 [TBL] [Abstract][Full Text] [Related]
5. Imaging and quantitative assessment of long bone vascularization in the adult rat using microcomputed tomography. Fei J; Peyrin F; Malaval L; Vico L; Lafage-Proust MH Anat Rec (Hoboken); 2010 Feb; 293(2):215-24. PubMed ID: 19957340 [TBL] [Abstract][Full Text] [Related]
6. Monochromatic synchrotron radiation muCT reveals disuse-mediated canal network rarefaction in cortical bone of growing rat tibiae. Matsumoto T; Yoshino M; Asano T; Uesugi K; Todoh M; Tanaka M J Appl Physiol (1985); 2006 Jan; 100(1):274-80. PubMed ID: 16141381 [TBL] [Abstract][Full Text] [Related]
7. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT. Hu J; Cao Y; Wu T; Li D; Lu H Med Phys; 2014 Oct; 41(10):101904. PubMed ID: 25281956 [TBL] [Abstract][Full Text] [Related]
8. Acceleration of Bone Defect Healing and Regeneration by Low-Intensity Ultrasound Radiation Force in a Rat Tibial Model. Liu J; Li X; Zhang D; Jiao J; Wu L; Hao F; Qin YX Ultrasound Med Biol; 2018 Dec; 44(12):2646-2654. PubMed ID: 30286949 [TBL] [Abstract][Full Text] [Related]
9. Micro-CT observation of angiogenesis in bone regeneration. Udagawa A; Sato S; Hasuike A; Kishida M; Arai Y; Ito K Clin Oral Implants Res; 2013 Jul; 24(7):787-92. PubMed ID: 22458557 [TBL] [Abstract][Full Text] [Related]
10. Intravital Imaging to Understand Spatiotemporal Regulation of Osteogenesis and Angiogenesis in Cranial Defect Repair and Regeneration. Zhang X Methods Mol Biol; 2018; 1842():229-239. PubMed ID: 30196414 [TBL] [Abstract][Full Text] [Related]
11. Cortical measurements of the tibia from high resolution peripheral quantitative computed tomography images: a comparison with synchrotron radiation micro-computed tomography. Ostertag A; Peyrin F; Fernandez S; Laredo JD; de Vernejoul MC; Chappard C Bone; 2014 Jun; 63():7-14. PubMed ID: 24582804 [TBL] [Abstract][Full Text] [Related]
12. Strontium ranelate stimulates trabecular bone formation in a rat tibial bone defect healing process. Lavet C; Mabilleau G; Chappard D; Rizzoli R; Ammann P Osteoporos Int; 2017 Dec; 28(12):3475-3487. PubMed ID: 28956091 [TBL] [Abstract][Full Text] [Related]
13. Computed Tomography and Optical Imaging of Osteogenesis-angiogenesis Coupling to Assess Integration of Cranial Bone Autografts and Allografts. Cohn Yakubovich D; Tawackoli W; Sheyn D; Kallai I; Da X; Pelled G; Gazit D; Gazit Z J Vis Exp; 2015 Dec; (106):e53459. PubMed ID: 26779586 [TBL] [Abstract][Full Text] [Related]
14. [Detection of microvasculature in rat hind limb using synchrotron radiation]. Lu WF; Dong ZH; Fu WG; Zhang XM; Peng YF; Chen SL; Xiao TQ; Xie HL; DU GH; Deng B Zhonghua Yi Xue Za Zhi; 2012 Mar; 92(11):778-82. PubMed ID: 22781361 [TBL] [Abstract][Full Text] [Related]
15. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition. Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237 [TBL] [Abstract][Full Text] [Related]
16. Osteogenesis and angiogenesis in regenerating bone during transverse distraction: quantitative evaluation using a canine model. Matsuyama J; Ohnishi I; Kageyama T; Oshida H; Suwabe T; Nakamura K Clin Orthop Relat Res; 2005 Apr; (433):243-50. PubMed ID: 15805964 [TBL] [Abstract][Full Text] [Related]
17. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair. Huang C; Ness VP; Yang X; Chen H; Luo J; Brown EB; Zhang X J Bone Miner Res; 2015 Jul; 30(7):1217-30. PubMed ID: 25640220 [TBL] [Abstract][Full Text] [Related]
18. [A comparative study on effect of different defect diameters on healing in middle 1/3 tibia monolayer cortical bone defect mouse model]. Li F; Xu Y; Pan X; Li X; Liu H; Yang D; Li L; Sha Y; Shi J; Zhao W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Oct; 26(10):1218-22. PubMed ID: 23167107 [TBL] [Abstract][Full Text] [Related]
19. Fgf-18 is required for osteogenesis but not angiogenesis during long bone repair. Behr B; Sorkin M; Manu A; Lehnhardt M; Longaker MT; Quarto N Tissue Eng Part A; 2011 Aug; 17(15-16):2061-9. PubMed ID: 21457097 [TBL] [Abstract][Full Text] [Related]
20. Comparison of high-resolution synchrotron-radiation-based phase-contrast imaging and absorption-contrast imaging for evaluating microstructure of vascular networks in rat brain: from 2D to 3D views. Li HL; Ding H; Yin XZ; Chen ZH; Tang B; Sun JY; Hu XH; Lv X; Kang ST; Fan YS; Wu T; Zhao SF; Xiao B; Zhang MQ J Synchrotron Radiat; 2019 Nov; 26(Pt 6):2024-2032. PubMed ID: 31721747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]