BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23836058)

  • 1. A critical context-dependent role for E boxes in the targeting of somatic hypermutation.
    McDonald JJ; Alinikula J; Buerstedde JM; Schatz DG
    J Immunol; 2013 Aug; 191(4):1556-66. PubMed ID: 23836058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of core DNA elements that target somatic hypermutation.
    Kohler KM; McDonald JJ; Duke JL; Arakawa H; Tan S; Kleinstein SH; Buerstedde JM; Schatz DG
    J Immunol; 2012 Dec; 189(11):5314-26. PubMed ID: 23087403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences.
    Yang SY; Fugmann SD; Schatz DG
    J Exp Med; 2006 Dec; 203(13):2919-28. PubMed ID: 17178919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences.
    Buerstedde JM; Alinikula J; Arakawa H; McDonald JJ; Schatz DG
    PLoS Biol; 2014 Apr; 12(4):e1001831. PubMed ID: 24691034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable deep learning reveals the role of an E-box motif in suppressing somatic hypermutation of AGCT motifs within human immunoglobulin variable regions.
    Tambe A; MacCarthy T; Pavri R
    Front Immunol; 2024; 15():1407470. PubMed ID: 38863710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA polymerases β and λ do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations.
    Schrader CE; Linehan EK; Ucher AJ; Bertocci B; Stavnezer J
    DNA Repair (Amst); 2013 Dec; 12(12):1087-93. PubMed ID: 24084171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biased dA/dT somatic hypermutation as regulated by the heavy chain intronic iEmu enhancer and 3'Ealpha enhancers in human lymphoblastoid B cells.
    Komori A; Xu Z; Wu X; Zan H; Casali P
    Mol Immunol; 2006 Apr; 43(11):1817-26. PubMed ID: 16412510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attracting AID to targets of somatic hypermutation.
    Tanaka A; Shen HM; Ratnam S; Kodgire P; Storb U
    J Exp Med; 2010 Feb; 207(2):405-15. PubMed ID: 20100870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation.
    Blagodatski A; Batrak V; Schmidl S; Schoetz U; Caldwell RB; Arakawa H; Buerstedde JM
    PLoS Genet; 2009 Jan; 5(1):e1000332. PubMed ID: 19132090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatic hypermutation of the AID transgene in B and non-B cells.
    Martin A; Scharff MD
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12304-8. PubMed ID: 12202747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data.
    Cui A; Di Niro R; Vander Heiden JA; Briggs AW; Adams K; Gilbert T; O'Connor KC; Vigneault F; Shlomchik MJ; Kleinstein SH
    J Immunol; 2016 Nov; 197(9):3566-3574. PubMed ID: 27707999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation.
    Senigl F; Maman Y; Dinesh RK; Alinikula J; Seth RB; Pecnova L; Omer AD; Rao SSP; Weisz D; Buerstedde JM; Aiden EL; Casellas R; Hejnar J; Schatz DG
    Cell Rep; 2019 Dec; 29(12):3902-3915.e8. PubMed ID: 31851922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish.
    Marianes AE; Zimmerman AM
    Immunology; 2011 Feb; 132(2):240-55. PubMed ID: 21070232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Episomal vectors to monitor and induce somatic hypermutation in human Burkitt-Lymphoma cell lines.
    Rückerl F; Busse B; Bachl J
    Mol Immunol; 2006 Apr; 43(10):1645-52. PubMed ID: 16310251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of somatic hypermutation.
    Odegard VH; Schatz DG
    Nat Rev Immunol; 2006 Aug; 6(8):573-83. PubMed ID: 16868548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ig Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences.
    Tarsalainen A; Maman Y; Meng FL; Kyläniemi MK; Soikkeli A; Budzyńska P; McDonald JJ; Šenigl F; Alt FW; Schatz DG; Alinikula J
    J Immunol; 2022 Jan; 208(1):143-154. PubMed ID: 34862258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex regulation of somatic hypermutation by cis-acting sequences in the endogenous IgH gene in hybridoma cells.
    Ronai D; Iglesias-Ussel MD; Fan M; Shulman MJ; Scharff MD
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11829-34. PubMed ID: 16087866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinase-mediated cassette exchange as a novel method to study somatic hypermutation in Ramos cells.
    Baughn LB; Kalis SL; MacCarthy T; Wei L; Fan M; Bergman A; Scharff MD
    mBio; 2011; 2(5):. PubMed ID: 21990614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1.
    Kanehiro Y; Todo K; Negishi M; Fukuoka J; Gan W; Hikasa T; Kaga Y; Takemoto M; Magari M; Li X; Manley JL; Ohmori H; Kanayama N
    Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1216-21. PubMed ID: 22232677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why does somatic hypermutation by AID require transcription of its target genes?
    Storb U
    Adv Immunol; 2014; 122():253-77. PubMed ID: 24507160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.