These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 23836078)
1. Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs. Zhu B; Chen H; Chen B; Xu Y; Zhang K J Digit Imaging; 2014 Feb; 27(1):90-7. PubMed ID: 23836078 [TBL] [Abstract][Full Text] [Related]
2. The development and evaluation of a computerized diagnosis scheme for pneumoconiosis on digital chest radiographs. Zhu B; Luo W; Li B; Chen B; Yang Q; Xu Y; Wu X; Chen H; Zhang K Biomed Eng Online; 2014 Oct; 13():141. PubMed ID: 25277489 [TBL] [Abstract][Full Text] [Related]
3. An automatic computer-aided detection scheme for pneumoconiosis on digital chest radiographs. Yu P; Xu H; Zhu Y; Yang C; Sun X; Zhao J J Digit Imaging; 2011 Jun; 24(3):382-93. PubMed ID: 20174852 [TBL] [Abstract][Full Text] [Related]
4. Intelligent Image Diagnosis of Pneumoconiosis Based on Wavelet Transform-Derived Texture Features. Wang Z; Hu M; Zeng M; Wang G Comput Math Methods Med; 2022; 2022():2037019. PubMed ID: 35341000 [TBL] [Abstract][Full Text] [Related]
5. Computerized Classification of Pneumoconiosis on Digital Chest Radiography Artificial Neural Network with Three Stages. Okumura E; Kawashita I; Ishida T J Digit Imaging; 2017 Aug; 30(4):413-426. PubMed ID: 28108817 [TBL] [Abstract][Full Text] [Related]
6. Comparison of digital with film radiographs for the classification of pneumoconiotic pleural abnormalities. Larson TC; Holiday DB; Antao VC; Thomas J; Pinheiro G; Kapil V; Franzblau A Acad Radiol; 2012 Feb; 19(2):131-40. PubMed ID: 22098943 [TBL] [Abstract][Full Text] [Related]
7. Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography. Wang X; Yu J; Zhu Q; Li S; Zhao Z; Yang B; Pu J Occup Environ Med; 2020 Sep; 77(9):597-602. PubMed ID: 32471837 [TBL] [Abstract][Full Text] [Related]
8. Computer-Aided Detection of Incidental Lumbar Spine Fractures from Routine Dual-Energy X-Ray Absorptiometry (DEXA) Studies Using a Support Vector Machine (SVM) Classifier. Mehta SD; Sebro R J Digit Imaging; 2020 Feb; 33(1):204-210. PubMed ID: 31062114 [TBL] [Abstract][Full Text] [Related]
9. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Depeursinge A; Yanagawa M; Leung AN; Rubin DL Med Phys; 2015 Apr; 42(4):2054-63. PubMed ID: 25832095 [TBL] [Abstract][Full Text] [Related]
10. Computerized analysis of pneumoconiosis in digital chest radiography: effect of artificial neural network trained with power spectra. Okumura E; Kawashita I; Ishida T J Digit Imaging; 2011 Dec; 24(6):1126-32. PubMed ID: 21153856 [TBL] [Abstract][Full Text] [Related]
11. Effect of finite sample size on feature selection and classification: a simulation study. Way TW; Sahiner B; Hadjiiski LM; Chan HP Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900 [TBL] [Abstract][Full Text] [Related]
12. [Quantitative analysis of pneumoconiosis in standard chest radiographs]. Sasaki Y; Katsuragawa S; Yanagisawa T Nihon Igaku Hoshasen Gakkai Zasshi; 1992 Oct; 52(10):1385-93. PubMed ID: 1448333 [TBL] [Abstract][Full Text] [Related]
13. [The analysis of consistency between digital radiography and high-kV chest radiographs in diagnosis pneumoconiosis]. Chen JQ; Jiang ZQ; Xiao Y; Zhao YW; Zhang X Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2012 Jan; 30(1):8-12. PubMed ID: 22730680 [TBL] [Abstract][Full Text] [Related]
14. Automatic detection and recognition of silicosis in chest radiograph. Zhu L; Zheng R; Jin H; Zhang Q; Zhang W Biomed Mater Eng; 2014; 24(6):3389-95. PubMed ID: 25227049 [TBL] [Abstract][Full Text] [Related]
15. A reliable method for colorectal cancer prediction based on feature selection and support vector machine. Zhao D; Liu H; Zheng Y; He Y; Lu D; Lyu C Med Biol Eng Comput; 2019 Apr; 57(4):901-912. PubMed ID: 30478811 [TBL] [Abstract][Full Text] [Related]
16. [Effects of image post-processing parameters on digital radiography chest radiograph for the diagnosis of pneumoconiosis]. Chen JQ; Jiang ZQ; Zhou B; Zhu Q; Liu B; Zhang X Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2012 Jan; 30(1):3-7. PubMed ID: 22730679 [TBL] [Abstract][Full Text] [Related]
17. [Study on evaluation method of circular small shadow profusion in chest CT reconstruction images of pneumoconiosis]. Liu C; Yang M; Wang Q; Bai J; Duan Z; Dong HT Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2024 May; 42(5):359-369. PubMed ID: 38802310 [No Abstract] [Full Text] [Related]
18. [Window settings in the application of pneumoconiosis digital radiography]. Zhao JJ; Jiang ZQ; Zhang M; Xiao Y; Chen JQ Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2017 Jul; 35(7):505-507. PubMed ID: 29081099 [No Abstract] [Full Text] [Related]
19. Development of CAD based on ANN analysis of power spectra for pneumoconiosis in chest radiographs: effect of three new enhancement methods. Okumura E; Kawashita I; Ishida T Radiol Phys Technol; 2014 Jul; 7(2):217-27. PubMed ID: 24414539 [TBL] [Abstract][Full Text] [Related]
20. Classification of breast masses using selected shape, edge-sharpness, and texture features with linear and kernel-based classifiers. Mu T; Nandi AK; Rangayyan RM J Digit Imaging; 2008 Jun; 21(2):153-69. PubMed ID: 18306000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]