These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23836078)

  • 21. Classification of fruits using computer vision and a multiclass support vector machine.
    Zhang Y; Wu L
    Sensors (Basel); 2012; 12(9):12489-505. PubMed ID: 23112727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies.
    Hussain L; Saeed S; Awan IA; Idris A; Nadeem MSA; Chaudhry QU
    Curr Med Imaging Rev; 2019; 15(6):595-606. PubMed ID: 32008569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated detection of pneumoconiosis with multilevel deep features learned from chest X-Ray radiographs.
    Devnath L; Luo S; Summons P; Wang D
    Comput Biol Med; 2021 Feb; 129():104125. PubMed ID: 33310394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.
    Hu S; Xu C; Guan W; Tang Y; Liu Y
    Biomed Mater Eng; 2014; 24(1):129-43. PubMed ID: 24211892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing film and digital radiographs for reliability of pneumoconiosis classifications: a modeling approach.
    Sen A; Lee SY; Gillespie BW; Kazerooni EA; Goodsitt MM; Rosenman KD; Lockey JE; Meyer CA; Petsonk EL; Wang ML; Franzblau A
    Acad Radiol; 2010 Apr; 17(4):511-9. PubMed ID: 20207319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computer-aided detection of pulmonary pathology in pediatric chest radiographs.
    Mouton A; Pitcher RD; Douglas TS
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):619-25. PubMed ID: 20879452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning pneumoconiosis staging and diagnosis system based on multi-stage joint approach.
    Liu C; Fang Y; Xie Y; Zheng H; Li X; Wu D; Zhang T
    BMC Med Imaging; 2024 Jul; 24(1):165. PubMed ID: 38956579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Computerized classification of pneumoconiosis radiographs based on grey level co-occurrence matrices].
    Masumoto Y; Kawashita I; Okura Y; Nakajima M; Okumura E; Ishida T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2011; 67(4):336-45. PubMed ID: 21532243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A systematic review of digital radiography for the screening and recognition of pneumoconiosis].
    Wang H; Li T
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2014 May; 32(5):327-34. PubMed ID: 25169085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs.
    Hwang EJ; Park S; Jin KN; Kim JI; Choi SY; Lee JH; Goo JM; Aum J; Yim JJ; Cohen JG; Ferretti GR; Park CM;
    JAMA Netw Open; 2019 Mar; 2(3):e191095. PubMed ID: 30901052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs.
    Dunnmon JA; Yi D; Langlotz CP; Ré C; Rubin DL; Lungren MP
    Radiology; 2019 Feb; 290(2):537-544. PubMed ID: 30422093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set.
    Sun T; Wang J; Li X; Lv P; Liu F; Luo Y; Gao Q; Zhu H; Guo X
    Comput Methods Programs Biomed; 2013 Aug; 111(2):519-24. PubMed ID: 23727300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: A pilot study.
    Acharya UR; Sree SV; Mookiah MR; Saba L; Gao H; Mallarini G; Suri JS
    Proc Inst Mech Eng H; 2013 Jun; 227(6):643-54. PubMed ID: 23636747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnosis of osteoporosis by extraction of trabecular features from hip radiographs using support vector machine: an investigation panorama with DXA.
    Sapthagirivasan V; Anburajan M
    Comput Biol Med; 2013 Nov; 43(11):1910-9. PubMed ID: 24209936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative computer-aided analysis of lung texture in chest radiographs.
    Katsuragawa S; Doi K; MacMahon H; Nakamori N; Sasaki Y; Fennessy JJ
    Radiographics; 1990 Mar; 10(2):257-69. PubMed ID: 2326513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification.
    Shiraishi J; Li Q; Suzuki K; Engelmann R; Doi K
    Med Phys; 2006 Jul; 33(7):2642-53. PubMed ID: 16898468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification.
    Yao J; Dwyer A; Summers RM; Mollura DJ
    Acad Radiol; 2011 Mar; 18(3):306-14. PubMed ID: 21295734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning in chest radiography: Detection of findings and presence of change.
    Singh R; Kalra MK; Nitiwarangkul C; Patti JA; Homayounieh F; Padole A; Rao P; Putha P; Muse VV; Sharma A; Digumarthy SR
    PLoS One; 2018; 13(10):e0204155. PubMed ID: 30286097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.
    Lima CA; Coelho AL
    Artif Intell Med; 2011 Oct; 53(2):83-95. PubMed ID: 21852077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differentiation and prediction of pneumoconiosis stage by computed tomography texture analysis based on U-Net neural network.
    Hu X; Zhou R; Hu M; Wen J; Shen T
    Comput Methods Programs Biomed; 2022 Oct; 225():107098. PubMed ID: 36057227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.