These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 23836141)
1. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. Jiang LY; Zhang YY; Li Z; Liu JZ J Ind Microbiol Biotechnol; 2013 Oct; 40(10):1143-51. PubMed ID: 23836141 [TBL] [Abstract][Full Text] [Related]
2. CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced L-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase. Dong J; Kan B; Liu H; Zhan M; Wang S; Xu G; Han R; Ni Y Appl Biochem Biotechnol; 2020 Jul; 191(3):955-967. PubMed ID: 31950445 [TBL] [Abstract][Full Text] [Related]
3. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. Jiang LY; Chen SG; Zhang YY; Liu JZ BMC Biotechnol; 2013 Jun; 13():47. PubMed ID: 23725060 [TBL] [Abstract][Full Text] [Related]
4. Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum. Hwang GH; Cho JY J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1869-74. PubMed ID: 22987028 [TBL] [Abstract][Full Text] [Related]
5. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. Li Z; Shen YP; Jiang XL; Feng LS; Liu JZ J Ind Microbiol Biotechnol; 2018 Feb; 45(2):123-139. PubMed ID: 29344811 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of L-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum. Hwang GH; Cho JY J Ind Microbiol Biotechnol; 2014 Mar; 41(3):573-8. PubMed ID: 24402505 [TBL] [Abstract][Full Text] [Related]
7. Effect of increased glutamate availability on L-ornithine production in Corynebacterium glutamicum. Hwang JH; Hwang GH; Cho JY J Microbiol Biotechnol; 2008 Apr; 18(4):704-10. PubMed ID: 18467864 [TBL] [Abstract][Full Text] [Related]
8. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production. Zhang B; Yu M; Zhou Y; Li Y; Ye BC Microb Cell Fact; 2017 Sep; 16(1):158. PubMed ID: 28938890 [TBL] [Abstract][Full Text] [Related]
9. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F; Li K; Huan X; Wang X Appl Biochem Biotechnol; 2013 Sep; 171(2):504-21. PubMed ID: 23868449 [TBL] [Abstract][Full Text] [Related]
10. Proteome analysis guided genetic engineering of Corynebacterium glutamicum S9114 for tween 40-triggered improvement in L-ornithine production. Jiang Y; Huang MZ; Chen XL; Zhang B Microb Cell Fact; 2020 Jan; 19(1):2. PubMed ID: 31906967 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Kim SY; Lee J; Lee SY Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of ornithine production in proline-supplemented Corynebacterium glutamicum by ornithine cyclodeaminase. Lee SY; Cho JY; Lee HJ; Kim YH; Min J J Microbiol Biotechnol; 2010 Jan; 20(1):127-31. PubMed ID: 20134243 [TBL] [Abstract][Full Text] [Related]
13. Improvement of l-Leucine Production in Wang YY; Zhang F; Xu JZ; Zhang WG; Chen XL; Liu LM Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022947 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. Zhan M; Kan B; Dong J; Xu G; Han R; Ni Y J Ind Microbiol Biotechnol; 2019 Jan; 46(1):45-54. PubMed ID: 30446890 [TBL] [Abstract][Full Text] [Related]
15. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Feng J; Quan Y; Gu Y; Liu F; Huang X; Shen H; Dang Y; Cao M; Gao W; Lu X; Wang Y; Song C; Wang S Microb Cell Fact; 2017 May; 16(1):88. PubMed ID: 28532451 [TBL] [Abstract][Full Text] [Related]
16. An NADPH-auxotrophic Corynebacterium glutamicum recombinant strain and used it to construct L-leucine high-yielding strain. Chen SL; Liu TS; Zhang WG; Xu JZ Int Microbiol; 2023 Jan; 26(1):11-24. PubMed ID: 35925494 [TBL] [Abstract][Full Text] [Related]
17. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. Jensen JV; Eberhardt D; Wendisch VF J Biotechnol; 2015 Nov; 214():85-94. PubMed ID: 26393954 [TBL] [Abstract][Full Text] [Related]
18. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production. Ma W; Wang J; Li Y; Hu X; Shi F; Wang X Biotechnol Appl Biochem; 2016 Nov; 63(6):877-885. PubMed ID: 27010514 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Xu J; Han M; Zhang J; Guo Y; Zhang W Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Li Y; Cong H; Liu B; Song J; Sun X; Zhang J; Yang Q Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]