These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 2383626)

  • 21. Changes of the asymmetrical particle distribution in erythrocyte membranes.
    Richter W
    Acta Histochem Suppl; 1981; 23():157-63. PubMed ID: 6784160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation--relation between short-lived and long-lived pores.
    Pavlin M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):38-46. PubMed ID: 18499534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Micro pulsed radio-frequency electroporation chips.
    He H; Chang DC; Lee YK
    Bioelectrochemistry; 2006 Jan; 68(1):89-97. PubMed ID: 16039911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model of cell electrofusion. Membrane electroporation, pore coalescence and percolation.
    Sugar IP; Förster W; Neumann E
    Biophys Chem; 1987 May; 26(2-3):321-35. PubMed ID: 3607233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of mechanisms of electric field-induced DNA transfection. I. DNA entry by surface binding and diffusion through membrane pores.
    Xie TD; Sun L; Tsong TY
    Biophys J; 1990 Jul; 58(1):13-9. PubMed ID: 2200534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments.
    Heida T; Wagenaar JB; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1195-203. PubMed ID: 12374345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Annular structures in erythrocyte membranes of various animal species as revealed by electron microscopy.
    Kim KS; Avigad LS; Salton MR; Bernheimer AW
    Cytobios; 1983; 36(142):119-31. PubMed ID: 6851657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induced endocytosis in human fibroblasts by electrical fields.
    Glogauer M; Lee W; McCulloch CA
    Exp Cell Res; 1993 Sep; 208(1):232-40. PubMed ID: 8359218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An X-ray diffraction and electron microscopy study of the extraction of erythrocyte membranes with the bile salt, cholate.
    Finean JB; Gunn TK; Hutchinson A; Mills D
    Biochim Biophys Acta; 1984 Oct; 777(1):140-6. PubMed ID: 6487616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variations in the appearance of membrane particles after various pretreatments.
    Richter W
    Acta Histochem Suppl; 1981; 23():165-71. PubMed ID: 6784161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of cell electroporation in small-volume samples.
    Saulis G; Praneviciŭte R
    Biomed Sci Instrum; 2007; 43():306-11. PubMed ID: 17487099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid segregation from human erythrocyte tethers.
    Benser A; Meyer HW; Linss W; Geyer G
    Acta Histochem Suppl; 1981; 23():263-8. PubMed ID: 6164075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The ultrastructural and dynamic characteristics of erythrocyte membranes. The effect of the physiological status and temperature].
    Repin NV; Repina SV
    Tsitologiia; 1990; 32(11):1094-8. PubMed ID: 1965519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron microscopic demonstration and evaluation of irreversible electroporation-induced nanopores on hepatocyte membranes.
    Lee EW; Wong D; Prikhodko SV; Perez A; Tran C; Loh CT; Kee ST
    J Vasc Interv Radiol; 2012 Jan; 23(1):107-13. PubMed ID: 22137466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy.
    Ryttsén F; Farre C; Brennan C; Weber SG; Nolkrantz K; Jardemark K; Chiu DT; Orwar O
    Biophys J; 2000 Oct; 79(4):1993-2001. PubMed ID: 11023903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loading trehalose into red blood cells by electroporation and its application in freeze-drying.
    Zhou X; Yuan J; Liu J; Liu B
    Cryo Letters; 2010; 31(2):147-56. PubMed ID: 20687457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane fusion events during endocytosis in mouse kidney tubule cells detected by rapid freezing followed by freeze-substitution.
    Fujioka A; Ohtsuki M; Nagano M; Mori S
    J Electron Microsc (Tokyo); 1990; 39(5):356-62. PubMed ID: 2084195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-electroporation as a model for fusion pore formation.
    Luitel P; Schroeter DF; Powell JW
    J Biomol Struct Dyn; 2007 Apr; 24(5):495-503. PubMed ID: 17313195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electropore diameters, lifetimes, numbers, and locations in individual erythrocyte ghosts.
    Sowers AE; Lieber MR
    FEBS Lett; 1986 Sep; 205(2):179-84. PubMed ID: 3743774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.