These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2383638)

  • 1. Free energy calculation on base specificity of drug--DNA interactions: application to daunomycin and acridine intercalation into DNA.
    Cieplak P; Rao SN; Grootenhuis PD; Kollman PA
    Biopolymers; 1990; 29(4-5):717-27. PubMed ID: 2383638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, thermodynamics and cooperativity of the glucocorticoid receptor DNA-binding domain in complex with different response elements. Molecular dynamics simulation and free energy perturbation studies.
    Eriksson MA; Nilsson L
    J Mol Biol; 1995 Oct; 253(3):453-72. PubMed ID: 7473727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercalation of daunomycin into stacked DNA base pairs. DFT study of an anticancer drug.
    Barone G; Guerra CF; Gambino N; Silvestri A; Lauria A; Almerico AM; Bickelhaupt FM
    J Biomol Struct Dyn; 2008 Aug; 26(1):115-30. PubMed ID: 18533732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of the DNA sequence preferences of daunomycin.
    Skorobogaty A; White RJ; Phillips DR; Reiss JA
    Drug Des Deliv; 1988 Jul; 3(2):125-51. PubMed ID: 2855576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistep drug intercalation: molecular dynamics and free energy studies of the binding of daunomycin to DNA.
    Wilhelm M; Mukherjee A; Bouvier B; Zakrzewska K; Hynes JT; Lavery R
    J Am Chem Soc; 2012 May; 134(20):8588-96. PubMed ID: 22548344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-stacking interactions determine the sequence specificity of the deoxyribonuclease activity of 1,10-phenanthroline-copper ion.
    Schaeffer F; Rimsky S; Spassky A
    J Mol Biol; 1996 Jul; 260(4):523-39. PubMed ID: 8759318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of daunomycin to diaminopurine- and/or inosine-substituted DNA.
    Bailly C; Suh D; Waring MJ; Chaires JB
    Biochemistry; 1998 Jan; 37(4):1033-45. PubMed ID: 9454594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic factors in DNA intercalation.
    Medhi C; Mitchell JB; Price SL; Tabor AB
    Biopolymers; 1999; 52(2):84-93. PubMed ID: 10898854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence specificity in the binding of anti-tumour anthracyclines to DNA: a success of theory.
    Pullman B
    Anticancer Drug Des; 1991 May; 6(2):95-105. PubMed ID: 2039585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the molecular mechanism of drug intercalation into DNA: a simulation study of the intercalation pathway, free energy, and DNA structural changes.
    Mukherjee A; Lavery R; Bagchi B; Hynes JT
    J Am Chem Soc; 2008 Jul; 130(30):9747-55. PubMed ID: 18611009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminal tail domains of core histones in nucleosome block the access of anticancer drugs, mithramycin and daunomycin, to the nucleosomal DNA.
    Mir MA; Das S; Dasgupta D
    Biophys Chem; 2004 Apr; 109(1):121-35. PubMed ID: 15059665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-energy perturbation methods to study structure and energetics of DNA adducts: results for the major N2-dG adduct of benzo[a]pyrene in two conformations and different sequence contexts.
    Chandani S; Lee CH; Loechler EL
    Chem Res Toxicol; 2005 Jul; 18(7):1108-23. PubMed ID: 16022503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for the dynemicin-A cleavage of DNA using molecular dynamics simulation.
    Cardozo MG; Hopfinger AJ
    Biopolymers; 1993 Mar; 33(3):377-88. PubMed ID: 8461449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of anthracyclines and synthetic hexanucleotides. Structural factors influencing sequence specificity.
    Rizzo V; Battistini C; Vigevani A; Sacchi N; Razzano G; Arcamone F; Garbesi A; Colonna FP; Capobianco M; Tondelli L
    J Mol Recognit; 1989 Nov; 2(3):132-41. PubMed ID: 2636902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modelling methods for prediction of sequence-selectivity in DNA recognition.
    Wang H; Laughton CA
    Methods; 2007 Jun; 42(2):196-203. PubMed ID: 17472901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic characterization of daunomycin-DNA interactions: comparison of complete binding profiles for a series of DNA host duplexes.
    Remeta DP; Mudd CP; Berger RL; Breslauer KJ
    Biochemistry; 1993 May; 32(19):5064-73. PubMed ID: 8494883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic and non-electrostatic contributions to the binding free energies of anthracycline antibiotics to DNA.
    Baginski M; Fogolari F; Briggs JM
    J Mol Biol; 1997 Nov; 274(2):253-67. PubMed ID: 9398531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative binding free energy calculations of DNA to daunomycin and its 13-dihydro analogue.
    Shi Y; Zhao H; Wang C
    Int J Biol Macromol; 1993 Aug; 15(4):247-51. PubMed ID: 8373745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of daunomycin complexed to d-TGATCA by two-dimensional nuclear magnetic resonance spectroscopy.
    Barthwal R; Sharma U; Srivastava N; Jain M; Awasthi P; Kaur M; Barthwal SK; Govil G
    Eur J Med Chem; 2006 Jan; 41(1):27-39. PubMed ID: 16293348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.
    Sauvé S; Tremblay L; Lavigne P
    J Mol Biol; 2004 Sep; 342(3):813-32. PubMed ID: 15342239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.