BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 23836467)

  • 1. Nanostructure shape effects on response of plasmonic aptamer sensors.
    Balamurugan S; Mayer KM; Lee S; Soper SA; Hafner JH; Spivak DA
    J Mol Recognit; 2013 Sep; 26(9):402-7. PubMed ID: 23836467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A.
    Park JH; Byun JY; Mun H; Shim WB; Shin YB; Li T; Kim MG
    Biosens Bioelectron; 2014 Sep; 59():321-7. PubMed ID: 24747570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance.
    Sim HR; Wark AW; Lee HJ
    Analyst; 2010 Oct; 135(10):2528-32. PubMed ID: 20725693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.
    Mayer KM; Lee S; Liao H; Rostro BC; Fuentes A; Scully PT; Nehl CL; Hafner JH
    ACS Nano; 2008 Apr; 2(4):687-92. PubMed ID: 19206599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free optical detection of aptamer-protein interactions using gold-capped oxide nanostructures.
    Kim DK; Kerman K; Hiep HM; Saito M; Yamamura S; Takamura Y; Kwon YS; Tamiya E
    Anal Biochem; 2008 Aug; 379(1):1-7. PubMed ID: 18485275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the spectral shifts in LSPR biosensing using DNA-functionalized gold nanorods in a competitive assay format for the detection of interferon-γ.
    Lin DZ; Chuang PC; Liao PC; Chen JP; Chen YF
    Biosens Bioelectron; 2016 Jul; 81():221-228. PubMed ID: 26954787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H; Tang C; Zeng Y; Yu X; Liao B; Xia X; Yi P; Chu PK
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):96-101. PubMed ID: 19211228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
    Tang Q; Su X; Loh KP
    J Colloid Interface Sci; 2007 Nov; 315(1):99-106. PubMed ID: 17689549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly sensitive and widely adaptable plasmonic aptasensor using berberine for small-molecule detection.
    Park JH; Byun JY; Jang H; Hong D; Kim MG
    Biosens Bioelectron; 2017 Nov; 97():292-298. PubMed ID: 28618365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker.
    Truong PL; Kim BW; Sim SJ
    Lab Chip; 2012 Mar; 12(6):1102-9. PubMed ID: 22298159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core-shell gold nanorods.
    Huang H; Huang S; Yuan S; Qu C; Chen Y; Xu Z; Liao B; Zeng Y; Chu PK
    Anal Chim Acta; 2011 Jan; 683(2):242-7. PubMed ID: 21167977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective analysis of melagatran via an LSPR biosensor integrated with a microfluidic chip.
    Guo L; Yin Y; Huang R; Qiu B; Lin Z; Yang HH; Li J; Chen G
    Lab Chip; 2012 Oct; 12(20):3901-6. PubMed ID: 22836379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin.
    Bai Y; Feng F; Zhao L; Wang C; Wang H; Tian M; Qin J; Duan Y; He X
    Biosens Bioelectron; 2013 Sep; 47():265-70. PubMed ID: 23584389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance.
    Cappi G; Spiga FM; Moncada Y; Ferretti A; Beyeler M; Bianchessi M; Decosterd L; Buclin T; Guiducci C
    Anal Chem; 2015 May; 87(10):5278-85. PubMed ID: 25811093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoarray-based biomolecular detection using individual Au nanoparticles with minimized localized surface plasmon resonance variations.
    Guo L; Ferhan AR; Lee K; Kim DH
    Anal Chem; 2011 Apr; 83(7):2605-12. PubMed ID: 21388163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiating surface and bulk interactions using localized surface plasmon resonances of gold nanorods.
    Nehru N; Donev EU; Huda GM; Yu L; Wei Y; Hastings JT
    Opt Express; 2012 Mar; 20(7):6905-14. PubMed ID: 22453368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules.
    Xie L; Yan X; Du Y
    Biosens Bioelectron; 2014 Mar; 53():58-64. PubMed ID: 24121209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-sensitivity detection of ATP using a localized surface plasmon resonance (LSPR) sensor and split aptamers.
    Park JH; Byun JY; Shim WB; Kim SU; Kim MG
    Biosens Bioelectron; 2015 Nov; 73():26-31. PubMed ID: 26042875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.