These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23836673)

  • 1. Temperature-memory polymer actuators.
    Behl M; Kratz K; Noechel U; Sauter T; Lendlein A
    Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12555-9. PubMed ID: 23836673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible bidirectional shape-memory polymers.
    Behl M; Kratz K; Zotzmann J; Nöchel U; Lendlein A
    Adv Mater; 2013 Aug; 25(32):4466-9. PubMed ID: 23765645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-memory polymer networks with crystallizable controlling units.
    Kratz K; Madbouly SA; Wagermaier W; Lendlein A
    Adv Mater; 2011 Sep; 23(35):4058-62. PubMed ID: 21815223
    [No Abstract]   [Full Text] [Related]  

  • 4. Copolymer Networks From Oligo(ε-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature.
    Saatchi M; Behl M; Nöchel U; Lendlein A
    Macromol Rapid Commun; 2015 May; 36(10):880-4. PubMed ID: 25776303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
    Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A
    Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(ε-caprolactone) Networks and Enable Self-Healing.
    Farhan M; Rudolph T; Nöchel U; Kratz K; Lendlein A
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate.
    Kelch S; Steuer S; Schmidt AM; Lendlein A
    Biomacromolecules; 2007 Mar; 8(3):1018-27. PubMed ID: 17305394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memory-effects of magnetic nanocomposites.
    Razzaq MY; Behl M; Lendlein A
    Nanoscale; 2012 Oct; 4(20):6181-95. PubMed ID: 22941347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Narrow response temperature range with excellent reversible shape memory effect for semi-crystalline networks as soft actuators.
    Chi D; Gu H; Wang J; Wu C; Wang R; Cheng Z; Zhang D; Xie Z; Liu Y
    Mater Horiz; 2023 Jul; 10(7):2464-2475. PubMed ID: 37039134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Method of Constructing a Drug-Polymer Temperature-Composition Phase Diagram Using Hot-Melt Extrusion.
    Tian Y; Jones DS; Donnelly C; Brannigan T; Li S; Andrews GP
    Mol Pharm; 2018 Apr; 15(4):1379-1391. PubMed ID: 29205040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-way and reversible dual-shape effect of polymer networks based on polypentadecalactone segments.
    Behl M; Zotzmann J; Lendlein A
    Int J Artif Organs; 2011 Feb; 34(2):231-7. PubMed ID: 21374574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization.
    Stroganov V; Al-Hussein M; Sommer JU; Janke A; Zakharchenko S; Ionov L
    Nano Lett; 2015 Mar; 15(3):1786-90. PubMed ID: 25650779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(ethylene-co-methacrylic acid).
    Lu L; Li G
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14812-23. PubMed ID: 27191832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance shape memory polymer networks based on rigid nanoparticle cores.
    Xu J; Song J
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7652-7. PubMed ID: 20375285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of polymer and glass transition in partially crystallized polymer solution studied by dielectric spectroscopy.
    Shinyashiki N; Asano M; Shimomura M; Sudo S; Kita R; Yagihara S
    J Biomater Sci Polym Ed; 2010; 21(14):1937-46. PubMed ID: 20566068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ice nucleation and supercooling behavior of polymer aqueous solutions.
    Kimizuka N; Viriyarattanasak C; Suzuki T
    Cryobiology; 2008 Feb; 56(1):80-7. PubMed ID: 18166169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Optical Actuator Based on Gold-Nanoparticle-Containing Temperature-Memory Semicrystalline Polymers.
    Ge F; Lu X; Xiang J; Tong X; Zhao Y
    Angew Chem Int Ed Engl; 2017 May; 56(22):6126-6130. PubMed ID: 28370828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable Humidity-Responsive Actuation of Polymer Films Enabled by Combining Shape Memory Property and Surface-Tunable Hygroscopicity.
    Ge Y; Wang H; Xue J; Jiang J; Liu Z; Liu Z; Li G; Zhao Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38773-38782. PubMed ID: 34369771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncontinuously Responding Polymeric Actuators.
    Farhan M; Rudolph T; Nöchel U; Yan W; Kratz K; Lendlein A
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33559-33564. PubMed ID: 28920427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entanglement-Based Thermoplastic Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications.
    Guo Q; Bishop CJ; Meyer RA; Wilson DR; Olasov L; Schlesinger DE; Mather PT; Spicer JB; Elisseeff JH; Green JJ
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13333-13341. PubMed ID: 29600843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.