These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 23836682)

  • 41. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 1H NMR spectra of butane-1,4-diol and other 1,4-diols: DFT calculation of shifts and coupling constants.
    Lomas JS
    Magn Reson Chem; 2014 Mar; 52(3):87-97. PubMed ID: 24519848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A computational study of 2J(HH)(gem) indirect spin-spin coupling constants in simple hydrides of the second and third periods.
    Alkorta I; Provasi PF; Aucar GA; Elguero J
    Magn Reson Chem; 2008 Apr; 46(4):356-61. PubMed ID: 18273860
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calculation of
    Rusakov YY; Rusakova IL; Semenov VA; Samultsev DO; Fedorov SV; Krivdin LB
    J Phys Chem A; 2018 Aug; 122(33):6746-6759. PubMed ID: 30044627
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bifurcated hydrogen-bonding effect on the shielding and coupling constants in trifluoroacetyl pyrroles as studied by 1H, 13C and 15N NMR spectroscopy and DFT calculations.
    Afonin AV; Ushakov IA; Mikhaleva AI; Trofimov BA
    Magn Reson Chem; 2007 Mar; 45(3):220-30. PubMed ID: 17221917
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-empirical calculations of NMR indirect spin-spin coupling constants. Part 13: configurational assignment of aminosulfonylamidines.
    Krivdin LB; Larina LI; Chernyshev KA; Rozentsveig IB
    Magn Reson Chem; 2005 Nov; 43(11):937-42. PubMed ID: 16088861
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.
    Dracínský M; Kaminský J; Bour P
    J Chem Phys; 2009 Mar; 130(9):094106. PubMed ID: 19275395
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stereochemical study of the sterically crowded phenylselanylalkenes by means of (77)Se-(1)H spin-spin coupling constants.
    Rusakov YY; Krivdin LB; Orlov NV; Ananikov VP
    Magn Reson Chem; 2011 Sep; 49(9):570-4. PubMed ID: 21818778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computational NMR coupling constants: shifting and scaling factors for evaluating 1JCH.
    San Fabián J; García de la Vega JM; Suardíaz R; Fernández-Oliva M; Pérez C; Crespo-Otero R; Contreras RH
    Magn Reson Chem; 2013 Dec; 51(12):775-87. PubMed ID: 24123317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the discrepancy between theory and experiment for the F-F spin-spin coupling constant of difluoroethyne.
    Faber R; Sauer SP
    Phys Chem Chem Phys; 2012 Dec; 14(47):16440-7. PubMed ID: 23131774
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stereochemical behavior of (2) J(Se,H) and (3)J(Se,H) spin-spin coupling constants across sp(3) carbons: a theoretical scrutiny.
    Rusakov YY; Krivdin LB
    Magn Reson Chem; 2012 Aug; 50(8):557-62. PubMed ID: 22753240
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 1H and 13C NMR chemical shifts and spin-spin coupling constants in trans- and cis-decalins.
    Dodziuk H; Jaszuński M; Schilf W
    Magn Reson Chem; 2005 Aug; 43(8):639-46. PubMed ID: 15915544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of electron correlation effects and contributions of NMR J-couplings from occupied localized molecular orbitals.
    Zarycz N; Aucar GA
    J Phys Chem A; 2012 Feb; 116(4):1272-82. PubMed ID: 22217318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-empirical calculations of NMR indirect carbon-carbon coupling constants. Part 12--aliphatic and alicyclic oximes.
    Krivdin LB; Scherbina NA; Istomina NV
    Magn Reson Chem; 2005 Jun; 43(6):435-43. PubMed ID: 15809975
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental, SOPPA(CCSD), and DFT analysis of substitutent effects on NMR 1JCF coupling constants in fluorobenzene derivatives.
    Vilcachagua JD; Ducati LC; Rittner R; Contreras RH; Tormena CF
    J Phys Chem A; 2011 Feb; 115(7):1272-9. PubMed ID: 21280628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental and computational studies of nJ(77Se, 1H) selenium-proton couplings in selenoglycosides.
    Kövér KE; Kumar AA; Rusakov YY; Krivdin LB; Illyés TZ; Szilágyi L
    Magn Reson Chem; 2011 Apr; 49(4):190-4. PubMed ID: 21387399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimized basis sets for the calculation of indirect nuclear spin-spin coupling constants involving the atoms B, Al, Si, P, and Cl.
    Provasi PF; Sauer SP
    J Chem Phys; 2010 Aug; 133(5):054308. PubMed ID: 20707533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Platinum-modified adenines: unprecedented protonation behavior revealed by NMR spectroscopy and relativistic density-functional theory calculations.
    Vícha J; Demo G; Marek R
    Inorg Chem; 2012 Feb; 51(3):1371-9. PubMed ID: 22260420
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vibrational Corrections to NMR Spin-Spin Coupling Constants from Relativistic Four-Component DFT Calculations.
    Jakubowska K; Pecul M; Ruud K
    J Phys Chem A; 2022 Oct; 126(39):7013-7020. PubMed ID: 36135807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.