These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23836687)

  • 1. The mechanism underlying maintenance of the endocochlear potential by the K+ transport system in fibrocytes of the inner ear.
    Adachi N; Yoshida T; Nin F; Ogata G; Yamaguchi S; Suzuki T; Komune S; Hisa Y; Hibino H; Kurachi Y
    J Physiol; 2013 Sep; 591(18):4459-72. PubMed ID: 23836687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NKCCs in the fibrocytes of the spiral ligament are silent on the unidirectional K⁺ transport that controls the electrochemical properties in the mammalian cochlea.
    Yoshida T; Nin F; Ogata G; Uetsuka S; Kitahara T; Inohara H; Akazawa K; Komune S; Kurachi Y; Hibino H
    Pflugers Arch; 2015 Jul; 467(7):1577-1589. PubMed ID: 25143138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ouabain-induced vacuolar formation in marginal cells in the stria vascularis is dependent on perilymphatic Na(+).
    Higashiyama K; Takeuchi S; Azuma H; Sawada S; Kakigi A; Takeda T
    ORL J Otorhinolaryngol Relat Spec; 2010; 71 Suppl 1():57-66. PubMed ID: 20185950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear.
    Nin F; Hibino H; Doi K; Suzuki T; Hisa Y; Kurachi Y
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1751-6. PubMed ID: 18218777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential.
    Yoshida T; Nin F; Murakami S; Ogata G; Uetsuka S; Choi S; Nakagawa T; Inohara H; Komune S; Kurachi Y; Hibino H
    Pflugers Arch; 2016 Sep; 468(9):1609-19. PubMed ID: 27344659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus.
    Hibino H; Nin F; Tsuzuki C; Kurachi Y
    Pflugers Arch; 2010 Mar; 459(4):521-33. PubMed ID: 20012478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na+ transport.
    Higashiyama K; Takeuchi S; Azuma H; Sawada S; Yamakawa K; Kakigi A; Takeda T
    Hear Res; 2003 Dec; 186(1-2):1-9. PubMed ID: 14644454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph.
    Sauer G; Richter CP; Klinke R
    Hear Res; 1999 Mar; 129(1-2):1-6. PubMed ID: 10190746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro.
    Wangemann P; Liu J; Marcus DC
    Hear Res; 1995 Apr; 84(1-2):19-29. PubMed ID: 7642451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of artificial endolymph injection into the cochlear duct on perilymph potassium.
    Kakigi A; Salt AN; Takeda T
    ORL J Otorhinolaryngol Relat Spec; 2010; 71 Suppl 1(Suppl 1):16-8. PubMed ID: 20185945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of alpha and beta subunit isoforms of Na,K-ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci.
    Schulte BA; Steel KP
    Hear Res; 1994 Jul; 78(1):65-76. PubMed ID: 7961179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction in the endocochlear potential caused by Cs(+) in the perilymph can be explained by the five-compartment model of the stria vascularis.
    Kakigi A; Takeuchi S; Ando M; Higashiyama K; Azuma H; Sato T; Takeda T
    Hear Res; 2002 Apr; 166(1-2):54-61. PubMed ID: 12062758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion transport in the cochlea of guinea pig. II. Chloride transport.
    Konishi T; Hamrick PE
    Acta Otolaryngol; 1978; 86(3-4):176-84. PubMed ID: 707062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of aging on potassium homeostasis and the endocochlear potential in the gerbil cochlea.
    Schmiedt RA
    Hear Res; 1996 Dec; 102(1-2):125-32. PubMed ID: 8951457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential.
    Shibata T; Hibino H; Doi K; Suzuki T; Hisa Y; Kurachi Y
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C1038-48. PubMed ID: 16822945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bumetanide-induced enlargement of the intercellular space in the stria vascularis requires an active Na+-K+-ATPase.
    Azuma H; Takeuchi S; Higashiyama K; Ando M; Kakigi A; Nakahira M; Yamakawa K; Takeda T
    Acta Otolaryngol; 2002 Dec; 122(8):816-21. PubMed ID: 12542198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroanatomy of the lateral wall of the cochlea.
    Prazma J
    Arch Otorhinolaryngol; 1975; 209(1):1-13. PubMed ID: 1173339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of reserpinization on the electrolytes distribution in inner ear fluids of guinea pig.
    Kanoh N; Makimoto K
    Acta Otolaryngol; 1984; 98(1-2):98-104. PubMed ID: 6464730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a medial K+ recycling pathway from inner hair cells.
    Spicer SS; Schulte BA
    Hear Res; 1998 Apr; 118(1-2):1-12. PubMed ID: 9606057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of endocochlear potential on basolateral Na+ and Cl- concentration: a study using vascular and perilymph perfusion.
    Shindo M; Miyamoto M; Abe N; Shida S; Murakami Y; Imai Y
    Jpn J Physiol; 1992; 42(4):617-30. PubMed ID: 1474679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.