These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23836697)

  • 1. A triggered DNA hydrogel cover to envelop and release single cells.
    Jin J; Xing Y; Xi Y; Liu X; Zhou T; Ma X; Yang Z; Wang S; Liu D
    Adv Mater; 2013 Sep; 25(34):4714-7. PubMed ID: 23836697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment.
    Hsieh HY; Camci-Unal G; Huang TW; Liao R; Chen TJ; Paul A; Tseng FG; Khademhosseini A
    Lab Chip; 2014 Feb; 14(3):482-93. PubMed ID: 24253194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes.
    You J; Shin DS; Patel D; Gao Y; Revzin A
    Adv Healthc Mater; 2014 Jan; 3(1):126-32. PubMed ID: 23828859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of DNA hydrogel plugs in microfluidic channels.
    Olsen KG; Ross DJ; Tarlov MJ
    Anal Chem; 2002 Mar; 74(6):1436-41. PubMed ID: 11922315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel-coated microfluidic channels for cardiomyocyte culture.
    Annabi N; Selimović Š; Acevedo Cox JP; Ribas J; Afshar Bakooshli M; Heintze D; Weiss AS; Cropek D; Khademhosseini A
    Lab Chip; 2013 Sep; 13(18):3569-77. PubMed ID: 23728018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Aqueous-Phase Microfluidics for Cell Encapsulation.
    Zhu K; Yu Y; Cheng Y; Tian C; Zhao G; Zhao Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4826-4832. PubMed ID: 30648845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying cell-cell communication in co-culture.
    Bogdanowicz DR; Lu HH
    Biotechnol J; 2013 Apr; 8(4):395-6. PubMed ID: 23554248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays.
    Lin SP; Kyriakides TR; Chen JJ
    Biomaterials; 2009 Jun; 30(17):3110-7. PubMed ID: 19344948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH and Thermo Dual-Responsive Fluorescent Hydrogel Actuator.
    Wu BY; Le XX; Jian YK; Lu W; Yang ZY; Zheng ZK; Théato P; Zhang JW; Zhang A; Chen T
    Macromol Rapid Commun; 2019 Feb; 40(4):e1800648. PubMed ID: 30485580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-templated assembly of droplet-derived PEG microtissues.
    Li CY; Wood DK; Hsu CM; Bhatia SN
    Lab Chip; 2011 Sep; 11(17):2967-75. PubMed ID: 21776518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled nanoparticle release from a hydrogel by DNA-mediated particle disaggregation.
    Nowald C; Käsdorf BT; Lieleg O
    J Control Release; 2017 Jan; 246():71-78. PubMed ID: 28017887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomolecular "ship-in-a-bottle": continuous RNA synthesis within hollow polymer hydrogel assemblies.
    Price AD; Zelikin AN; Wark KL; Caruso F
    Adv Mater; 2010 Feb; 22(6):720-3. PubMed ID: 20217777
    [No Abstract]   [Full Text] [Related]  

  • 14. Design of a single-step immunoassay principle based on the combination of an enzyme-labeled antibody release coating and a hydrogel copolymerized with a fluorescent enzyme substrate in a microfluidic capillary device.
    Wakayama H; Henares TG; Jigawa K; Funano S; Sueyoshi K; Endo T; Hisamoto H
    Lab Chip; 2013 Nov; 13(22):4304-7. PubMed ID: 24064761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting cytokine release from single T-cells.
    Zhu H; Stybayeva G; Silangcruz J; Yan J; Ramanculov E; Dandekar S; George MD; Revzin A
    Anal Chem; 2009 Oct; 81(19):8150-6. PubMed ID: 19739655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor.
    Zhou X; Li C; Shao Y; Chen C; Yang Z; Liu D
    Chem Commun (Camb); 2016 Aug; 52(70):10668-71. PubMed ID: 27506763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional magnetic assembly of microscale hydrogels.
    Xu F; Wu CA; Rengarajan V; Finley TD; Keles HO; Sung Y; Li B; Gurkan UA; Demirci U
    Adv Mater; 2011 Oct; 23(37):4254-60. PubMed ID: 21830240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell microarrays based on hydrogel microstructures for the application to cell-based biosensor.
    Koh WG
    Methods Mol Biol; 2011; 671():133-45. PubMed ID: 20967627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a high throughput impedimetric screening of chemosensitivity of cancer cells suspended in hydrogel and cultured in a paper substrate.
    Lei KF; Liu TK; Tsang NM
    Biosens Bioelectron; 2018 Feb; 100():355-360. PubMed ID: 28946107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary Pinning Assisted Patterning of Cell-Laden Hydrogel Microarrays in Microchips.
    Gumuscu B; Eijkel JCT
    Methods Mol Biol; 2018; 1771():225-238. PubMed ID: 29633217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.