BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 23836928)

  • 1. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells.
    Toulmay A; Prinz WA
    J Cell Biol; 2013 Jul; 202(1):35-44. PubMed ID: 23836928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipids and lipid domains of the yeast vacuole.
    Tsuji T; Fujimoto T
    Biochem Soc Trans; 2018 Oct; 46(5):1047-1054. PubMed ID: 30242116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles for L
    Liao PC; Garcia EJ; Tan G; Tsang CA; Pon LA
    Mol Biol Cell; 2021 Dec; 32(22):br12. PubMed ID: 34668753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast lipids can phase-separate into micrometer-scale membrane domains.
    Klose C; Ejsing CS; García-Sáez AJ; Kaiser HJ; Sampaio JL; Surma MA; Shevchenko A; Schwille P; Simons K
    J Biol Chem; 2010 Sep; 285(39):30224-32. PubMed ID: 20647309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and trafficking of exogenous sterols in Saccharomyces cerevisiae.
    Raychaudhuri S; Prinz WA
    Biochem Soc Trans; 2006 Jun; 34(Pt 3):359-62. PubMed ID: 16709161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction.
    Nelson LD; Johnson AE; London E
    J Biol Chem; 2008 Feb; 283(8):4632-42. PubMed ID: 18089559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stationary phase lipophagy as a cellular mechanism to recycle sterols during quiescence.
    Wang CW
    Autophagy; 2014; 10(11):2075-6. PubMed ID: 25484090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of lipid-protein rafts in vacuolar membrane.
    Ozolina NV; Nesterkina IS; Nurminsky VN; Stepanov AV; Kolesnikova EV; Gurina VV; Salyaev RK
    Dokl Biochem Biophys; 2011; 438():120-2. PubMed ID: 21725887
    [No Abstract]   [Full Text] [Related]  

  • 9. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuole membrane contact sites regulate liquid-ordered domain formation during glucose starvation.
    Sakuragi K; Schlarmann P; Ikeda A; Funato K
    FEBS Lett; 2023 Jun; 597(11):1462-1468. PubMed ID: 37013459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gel domains in the plasma membrane of Saccharomyces cerevisiae: highly ordered, ergosterol-free, and sphingolipid-enriched lipid rafts.
    Aresta-Branco F; Cordeiro AM; Marinho HS; Cyrne L; Antunes F; de Almeida RF
    J Biol Chem; 2011 Feb; 286(7):5043-54. PubMed ID: 21127065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide.
    Xu X; Bittman R; Duportail G; Heissler D; Vilcheze C; London E
    J Biol Chem; 2001 Sep; 276(36):33540-6. PubMed ID: 11432870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts.
    Murley A; Sarsam RD; Toulmay A; Yamada J; Prinz WA; Nunnari J
    J Cell Biol; 2015 May; 209(4):539-48. PubMed ID: 25987606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation.
    Hurst LR; Fratti RA
    Front Cell Dev Biol; 2020; 8():539. PubMed ID: 32719794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures.
    Leveille CL; Cornell CE; Merz AJ; Keller SL
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid rafts in protein sorting and cell polarity in budding yeast Saccharomyces cerevisiae.
    Bagnat M; Simons K
    Biol Chem; 2002 Oct; 383(10):1475-80. PubMed ID: 12452424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes and involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae.
    Nakamura N; Hirata A; Ohsumi Y; Wada Y
    J Biol Chem; 1997 Apr; 272(17):11344-9. PubMed ID: 9111041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria.
    Huang Z; London E
    Chem Phys Lipids; 2016 Sep; 199():11-16. PubMed ID: 26964703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the yeast vacuole as a system to test the lipidic drivers of membrane heterogeneity in living cells.
    Kim H; Juarez-Contreras I; Budin I
    Methods Enzymol; 2024; 700():77-104. PubMed ID: 38971613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.