These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23837338)

  • 41. Struvite precipitation in wastewater treatment plants anaerobic digestion supernatants using a magnesium oxide by-product.
    Aguilar-Pozo VB; Chimenos JM; Elduayen-Echave B; Olaciregui-Arizmendi K; López A; Gómez J; Guembe M; García I; Ayesa E; Astals S
    Sci Total Environ; 2023 Sep; 890():164084. PubMed ID: 37207781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Struvite formation, control and recovery.
    Doyle JD; Parsons SA
    Water Res; 2002 Sep; 36(16):3925-40. PubMed ID: 12405401
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate.
    Kim D; Ryu HD; Kim MS; Kim J; Lee SI
    J Hazard Mater; 2007 Jul; 146(1-2):81-5. PubMed ID: 17208368
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions.
    Song YH; Qiu GL; Yuan P; Cui XY; Peng JF; Zeng P; Duan L; Xiang LC; Qian F
    J Hazard Mater; 2011 Jun; 190(1-3):140-9. PubMed ID: 21459509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling.
    Huang H; Xiao D; Liu J; Hou L; Ding L
    Sci Rep; 2015 May; 5():10183. PubMed ID: 25960246
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A study of NH3-N and P refixation by struvite formation in hybrid anaerobic reactor.
    Lee JJ; Choi CU; Lee MJ; Chung IH; Kim DS
    Water Sci Technol; 2004; 49(5-6):207-14. PubMed ID: 15137425
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimisation of sludge line management to enhance phosphorus recovery in WWTP.
    Marti N; Ferrer J; Seco A; Bouzas A
    Water Res; 2008 Nov; 42(18):4609-18. PubMed ID: 18786693
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams.
    Münch EV; Barr K
    Water Res; 2001 Jan; 35(1):151-9. PubMed ID: 11257869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced phosphorus removal using acid-treated magnesium slag particles.
    Tang X; Li R; Wu M; Dong L; Wang Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3860-3871. PubMed ID: 29178003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Capture and recycling of ammonium by dolomite-aided struvite precipitation and thermolysis.
    Chen L; Zhou CH; Zhang H; Tong DS; Yu WH; Yang HM; Chu MQ
    Chemosphere; 2017 Nov; 187():302-310. PubMed ID: 28858711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced nutrient recovery from anaerobically digested poultry wastewater through struvite precipitation by organic acid pre-treatment and seeding in a bubble column electrolytic reactor.
    Aka RJN; Hossain MM; Nasir A; Zhan Y; Zhang X; Zhu J; Wang ZW; Wu S
    Water Res; 2024 Mar; 252():121239. PubMed ID: 38335753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Releasing phosphorus from calcium for struvite fertilizer production from anaerobically digested dairy effluent.
    Zhang T; Bowers KE; Harrison JH; Chen S
    Water Environ Res; 2010 Jan; 82(1):34-42. PubMed ID: 20112536
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of seeding materials and mixing strength on struvite precipitation.
    Wang J; Burken JG; Zhang X
    Water Environ Res; 2006 Feb; 78(2):125-32. PubMed ID: 16566520
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Optimal formation conditions and analytical methods of the target product by MAP precipitation].
    Hao XD; Lan L; Wang CC; van Loosdrecht MC
    Huan Jing Ke Xue; 2009 Apr; 30(4):1120-5. PubMed ID: 19545017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resource recovery from excess sludge by subcritical water combined with magnesium ammonium phosphate process.
    Arakane M; Imai T; Murakami S; Takeuchi M; Ukita M; Sekine M; Higuchi T
    Water Sci Technol; 2006; 54(9):81-6. PubMed ID: 17163045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.
    Massey MS; Ippolito JA; Davis JG; Sheffield RE
    Bioresour Technol; 2010 Feb; 101(3):877-85. PubMed ID: 19793651
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors.
    Simoes F; Vale P; Stephenson T; Soares A
    Environ Technol; 2018 Sep; 39(17):2278-2287. PubMed ID: 29187072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetics of struvite precipitation: effect of the magnesium dose on induction times and precipitation rates.
    Le Corre KS; Valsami-Jones E; Hobbs P; Parsons SA
    Environ Technol; 2007 Dec; 28(12):1317-24. PubMed ID: 18341142
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of magnesium and ammonium additions on phosphate recovery from greenhouse wastewater.
    Yi W; Lo KV; Mavinic DS; Liao PH; Koch F
    J Environ Sci Health B; 2005; 40(2):363-74. PubMed ID: 15825687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.