These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 23837544)
1. Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry. Carisse O; Morissette-Thomas V; Van der Heyden H Phytopathology; 2013 Aug; 103(8):811-21. PubMed ID: 23837544 [TBL] [Abstract][Full Text] [Related]
2. Association Between Weather Variables, Airborne Inoculum Concentration, and Raspberry Fruit Rot Caused by Botrytis cinerea. Carisse O; McNealis V; Kriss A Phytopathology; 2018 Jan; 108(1):70-82. PubMed ID: 28884623 [TBL] [Abstract][Full Text] [Related]
3. Ontogenic resistance of leaves and fruit, and how leaf folding influences the distribution of powdery mildew on strawberry plants colonized by Podosphaera aphanis. Asalf B; Gadoury DM; Tronsmo AM; Seem RC; Dobson A; Peres NA; Stensvand A Phytopathology; 2014 Sep; 104(9):954-63. PubMed ID: 24624951 [TBL] [Abstract][Full Text] [Related]
4. Spatial Pattern of Strawberry Powdery Mildew (Podosphaera aphanis) and Airborne Inoculum. Van der Heyden H; Lefebvre M; Roberge L; Brodeur L; Carisse O Plant Dis; 2014 Jan; 98(1):43-54. PubMed ID: 30708569 [TBL] [Abstract][Full Text] [Related]
5. Initiation, development, and survival of cleistothecia of Podosphaera aphanis and their role in the epidemiology of strawberry powdery mildew. Gadoury DM; Asalf B; Heidenreich MC; Herrero ML; Welser MJ; Seem RC; Tronsmo AM; Stensvand A Phytopathology; 2010 Mar; 100(3):246-51. PubMed ID: 20128698 [TBL] [Abstract][Full Text] [Related]
6. Resistance to Verticillium dahliae (Kleb.) in the strawberry breeding lines. Zebrowska J; Hortyński J; Cholewa T; Honcz K Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1031-6. PubMed ID: 17390855 [TBL] [Abstract][Full Text] [Related]
7. Identification of Weather Conditions Associated with the Occurrence, Severity, and Incidence of Black Seed Disease of Strawberry Caused by Mycosphaerella fragariae. Carisse O; McNealis V Phytopathology; 2018 Jan; 108(1):83-93. PubMed ID: 28884624 [TBL] [Abstract][Full Text] [Related]
8. Temperature regulates the initiation of chasmothecia in powdery mildew of strawberry. Asalf B; Gadoury DM; Tronsmo AM; Seem RC; Cadle-Davidson L; Brewer MT; Stensvand A Phytopathology; 2013 Jul; 103(7):717-24. PubMed ID: 23384856 [TBL] [Abstract][Full Text] [Related]
9. Quaternary IPM (integrated pest management)--concept for the control of powdery mildew in sugar beets. Wolf PF; Verreet A Commun Agric Appl Biol Sci; 2008; 73(2):57-68. PubMed ID: 19226742 [TBL] [Abstract][Full Text] [Related]
10. Silicon builds resilience in strawberry plants against both strawberry powdery mildew Podosphaera aphanis and two-spotted spider mites Tetranychus urticae. Liu B; Davies K; Hall A PLoS One; 2020; 15(12):e0241151. PubMed ID: 33290389 [TBL] [Abstract][Full Text] [Related]
11. Effect of Water Stress on Reproduction and Colonization of Rossi FG; Asalf B; Grieu C; Onofre RB; Peres NA; Gadoury DM; Stensvand A Plant Dis; 2020 Nov; 104(11):2973-2978. PubMed ID: 32902357 [TBL] [Abstract][Full Text] [Related]
12. Development of Weather- and Airborne Inoculum-Based Models to Describe Disease Severity of Wheat Powdery Mildew. Cao X; Yao D; Xu X; Zhou Y; Ding K; Duan X; Fan J; Luo Y Plant Dis; 2015 Mar; 99(3):395-400. PubMed ID: 30699700 [TBL] [Abstract][Full Text] [Related]
13. Identification of QTLs for powdery mildew (Podosphaera aphanis; syn. Sphaerotheca macularis f. sp. fragariae) susceptibility in cultivated strawberry (Fragaria ×ananassa). Sargent DJ; Buti M; Šurbanovski N; Brurberg MB; Alsheikh M; Kent MP; Davik J PLoS One; 2019; 14(9):e0222829. PubMed ID: 31536602 [TBL] [Abstract][Full Text] [Related]
14. Epidemics of ray blight on pyrethrum are linked to seed contamination and overwintering inoculum of Phoma ligulicola var. inoxydabilis. Pethybridge SJ; Gent DH; Hay FS Phytopathology; 2011 Sep; 101(9):1112-21. PubMed ID: 21501088 [TBL] [Abstract][Full Text] [Related]
15. A Genomic Resource for the Strawberry Powdery Mildew Pathogen Heaven T; Cockerton HM; Xu X; Goddard M; Armitage AD Phytopathology; 2023 Feb; 113(2):355-359. PubMed ID: 36738090 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of Podosphaera aphanis isolates to DMI fungicides: distribution and reduced cross-sensitivity. Sombardier A; Dufour MC; Blancard D; Corio-Costet MF Pest Manag Sci; 2010 Jan; 66(1):35-43. PubMed ID: 19728323 [TBL] [Abstract][Full Text] [Related]
17. Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores. Ferrandino FJ Phytopathology; 2008 May; 98(5):492-503. PubMed ID: 18943216 [TBL] [Abstract][Full Text] [Related]
18. Pulsed Water Mists for Suppression of Strawberry Powdery Mildew. Asalf B; Onofre RB; Gadoury DM; Peres NA; Stensvand A Plant Dis; 2021 Jan; 105(1):71-77. PubMed ID: 33175654 [TBL] [Abstract][Full Text] [Related]
19. Salicylic acid-primed defence response in octoploid strawberry 'Benihoppe' leaves induces resistance against Podosphaera aphanis through enhanced accumulation of proanthocyanidins and upregulation of pathogenesis-related genes. Feng J; Zhang M; Yang KN; Zheng CX BMC Plant Biol; 2020 Apr; 20(1):149. PubMed ID: 32268887 [TBL] [Abstract][Full Text] [Related]
20. Developing rainfall- and temperature-based models to describe infection of canola under field conditions caused by pycnidiospores of Leptosphaeria maculans. Ghanbarnia K; Dilantha Fernando WG; Crow G Phytopathology; 2009 Jul; 99(7):879-86. PubMed ID: 19522586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]